Lecture Notes for Abstract Algebra: Lecture $5+6$

1 Subgroups

1.1 Subgroups of a group

Definition 1. Let $(G, *)$ be a group. A subset $H \subset G$ is a subgroup if the restriction of the operation $*$ to H forms a group. This means:
(1) The neutral element $e \in H$.
(2) For $x \in H$, the inverse element $x^{-1} \in H$.
(3) For $x, y \in H \Rightarrow x * y \in H$.

We use the notation $H \leqslant G$, to say that H is a subgroup of G.
Example 2. Every group has a trivial subgroup given $H=\{e\} \leqslant G$.
Example 3. A subspace W of a vector space V is a subgroup for the addition operation. For example the set of solutions in \mathbb{R}^{n} to a system of homogeneous linear equations is naturally a subgroup of the vector space $\left(\mathbb{R}^{n},+\right)$. On the other hand, the set of solutions to a non-homogeneous system of equations is not a subgroup of $\left(\mathbb{R}^{n},+\right)$, since it does not contain the neutral element $\overrightarrow{0}$.

Proposition 4. $H \leqslant G$ is a subgroup iff $H \neq \emptyset$ and for all elements $x, y \in H$ we have

$$
x, y \in H \Rightarrow x * y^{-1} \in H
$$

Proof. If H is a subgroup, then $H \neq \emptyset$ and for $x, y \in H \Rightarrow x * y^{-1} \in H$. On the other hand, if $x \in H \Rightarrow x * x^{-1}=e \in H$. Also, $x \in H \Rightarrow e * x^{-1}=x^{-1} \in$ H and $x, y \in H \Rightarrow x *\left(y^{-1}\right)^{-1}=x * y \in H$.

Example 5. The even integers is a subgroup of the integers: $2 \mathbb{Z} \leqslant \mathbb{Z}$.
Example 6. The special linear group of matrices with determinant 1 is a subgroup of the group of invertible matrices

$$
\mathrm{SL}_{n}(\mathbb{R}) \leqslant \mathrm{GL}_{n}(\mathbb{R})
$$

On the other hand $\mathrm{GL}_{n}(\mathbb{R})$ is not subgroup of $M_{n}(\mathbb{R})$ with addition, since the operation in the former is matrix multiplication.

Example 7. For positive integers m, n such that $m \mid n$, the m-roots of unity are a subgroup of the n-roots of unity, that is $\Phi_{m} \leqslant \Phi_{n}$, for $m \mid n$. At the same time, the group Φ_{n} for any n is a subgroup of $C=\{z \in \mathbb{Z}| | z \mid=1\}$ (which is a subgrop \mathbb{C}^{*}).

Example 8. The dihedral group \mathbb{D}_{n} is a subgroup of the symmetric group S_{n} for $n \geq 3$. For $n>3$, not all permutations define a rigid motion of the n-dimension polygon.

Example 9. For $n=3$, the dihedral group \mathbb{D}_{3} is the whole group S_{3} of permutations. If we denote rotations by ρ_{1}, ρ_{2} and $\rho_{3}=i d$ and reflections by μ_{1}, μ_{2} and μ_{3}, the correspondence between elements is:

$$
\begin{gathered}
\rho_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \quad \rho_{2}=\rho_{1}^{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right) \rho_{3}=i d \\
\mu_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)=\left(\begin{array}{ll}
2 & 3
\end{array}\right) \quad \mu_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 3
\end{array}\right) \mu_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)=(12)
\end{gathered}
$$

The subgroups of \mathbb{D}_{3} are presented in the Fig 1.

Figure 1: Subgroup Diagram of \mathbb{D}_{3}

Example 10. Given subgroups $\left\{H_{i}\right\}_{i \in I}$, the intersection set $\cap_{i} H_{i}$ is also a subgroup.

Example 11. (Centralizer subgroup) Let G be a group and $S \subset G$, as subset of G. The centralizer of the set S in G, defined as

$$
C_{S}(G)=\{y \in G \mid y x=x y \quad \forall x \in S\}
$$

is the subgroup of the elements of G that commute with all elements of S. The center $Z(G)=C_{G}(G)$, of the the group G, is the subgroup of elements commuting with all members of G.

Example 12. (Conjugate elements and conjugate subgroups) Let $x \in G$ be an element of G. Define an inner automorphism $\varphi_{x}: G \longrightarrow G$ by the operation $\varphi_{x}(y)=x * y * x^{-1}$, for $y \in G$. An inner automorphism defines the conjugation action and we say that $\varphi_{x}(y)$ is conjugate to y. Conjugation defines an equivalence relation in G and a partition of G in classes called conjugacy classes. At the same time, given a subgroup $H \leqslant G$, the set of conjugates

$$
\varphi_{x}(H)=x H x^{-1}=\left\{x h x^{-1} \mid h \in H\right\}
$$

is a subgroup of G (not necessarily different from H).

Practice Questions:

1. Let G be a group. Show that the centralizer of a subset $S \subset G$ is a subgroup of G.
2. Find all subgroups for the groups \mathbb{V}_{4} and \mathbb{Z}_{4} of 4 elements.
3. Show that the intersection of subgroups gives you again a subgroup.
