Lecture Notes for Abstract Algebra: Lecture 5 + 6

1 Subgroups

1.1 Subgroups of a group

Definition 1. Let (G, *) be a group. A subset $H \subset G$ is a subgroup if the restriction of the operation * to H forms a group. This means:

- (1) The neutral element $e \in H$.
- (2) For $x \in H$, the inverse element $x^{-1} \in H$.
- (3) For $x, y \in H \Rightarrow x * y \in H$.

We use the notation $H \leq G$, to say that H is a subgroup of G.

Example 2. Every group has a trivial subgroup given $H = \{e\} \leq G$.

Example 3. A subspace W of a vector space V is a subgroup for the addition operation. For example the set of solutions in \mathbb{R}^n to a system of homogeneous linear equations is naturally a subgroup of the vector space $(\mathbb{R}^n, +)$. On the other hand, the set of solutions to a non-homogeneous system of equations is not a subgroup of $(\mathbb{R}^n, +)$, since it does not contain the neutral element $\vec{0}$.

Proposition 4. $H \leq G$ is a subgroup iff $H \neq \emptyset$ and for all elements $x, y \in H$ we have

$$x, y \in H \Rightarrow x * y^{-1} \in H.$$

Proof. If H is a subgroup, then $H \neq \emptyset$ and for $x, y \in H \Rightarrow x * y^{-1} \in H$. On the other hand, if $x \in H \Rightarrow x * x^{-1} = e \in H$. Also, $x \in H \Rightarrow e * x^{-1} = x^{-1} \in H$ and $x, y \in H \Rightarrow x * (y^{-1})^{-1} = x * y \in H$.

Example 5. The even integers is a subgroup of the integers: $2\mathbb{Z} \leq \mathbb{Z}$.

Example 6. The special linear group of matrices with determinant 1 is a subgroup of the group of invertible matrices

$$\operatorname{SL}_n(\mathbb{R}) \leqslant \operatorname{GL}_n(\mathbb{R}).$$

On the other hand $\operatorname{GL}_n(\mathbb{R})$ is not subgroup of $M_n(\mathbb{R})$ with addition, since the operation in the former is matrix multiplication. **Example 7.** For positive integers m, n such that m|n, the *m*-roots of unity are a subgroup of the *n*-roots of unity, that is $\Phi_m \leq \Phi_n$, for m|n. At the same time, the group Φ_n for any n is a subgroup of $C = \{z \in \mathbb{Z} \mid |z| = 1\}$ (which is a subgrop \mathbb{C}^*).

Example 8. The dihedral group \mathbb{D}_n is a subgroup of the symmetric group S_n for $n \geq 3$. For n > 3, not all permutations define a rigid motion of the *n*-dimension polygon.

Example 9. For n = 3, the dihedral group \mathbb{D}_3 is the whole group S_3 of permutations. If we denote rotations by ρ_1, ρ_2 and $\rho_3 = id$ and reflections by μ_1, μ_2 and μ_3 , the correspondence between elements is:

$$\rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (1\,2\,3) \quad \rho_2 = \rho_1^2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (1\,3\,2) \quad \rho_3 = id$$
$$\mu_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (2\,3) \quad \mu_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (1\,3) \quad \mu_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = (1\,2)$$

The subgroups of \mathbb{D}_3 are presented in the Fig 1.

Figure 1: Subgroup Diagram of \mathbb{D}_3

Example 10. Given subgroups $\{H_i\}_{i \in I}$, the intersection set $\cap_i H_i$ is also a subgroup.

Example 11. (Centralizer subgroup) Let G be a group and $S \subset G$, as subset of G. The centralizer of the set S in G, defined as

$$C_S(G) = \{ y \in G \, | \, yx = xy \quad \forall x \in S \},$$

is the subgroup of the elements of G that commute with all elements of S. The center $Z(G) = C_G(G)$, of the group G, is the subgroup of elements commuting with all members of G.

Example 12. (Conjugate elements and conjugate subgroups) Let $x \in G$ be an element of G. Define an inner automorphism $\varphi_x \colon G \longrightarrow G$ by the operation $\varphi_x(y) = x * y * x^{-1}$, for $y \in G$. An inner automorphism defines the conjugation action and we say that $\varphi_x(y)$ is conjugate to y. Conjugation defines an equivalence relation in G and a partition of G in classes called **conjugacy classes**. At the same time, given a subgroup $H \leq G$, the set of conjugates

$$\varphi_x(H) = xHx^{-1} = \{xhx^{-1} \mid h \in H\}$$

is a subgroup of G (not necessarily different from H).

Practice Questions:

1. Let G be a group. Show that the centralizer of a subset $S \subset G$ is a subgroup of G.

2. Find all subgroups for the groups \mathbb{V}_4 and \mathbb{Z}_4 of 4 elements.

3. Show that the intersection of subgroups gives you again a subgroup.