Math 46: Abstract Algebra

Homework 1: Sets, maps and relations. Due date: 3/8/2022

1. [10 pts] List all subsets of the 3 -element set $A=\{1,2,3\}$. How many subsets does a set with n elements have? Prove your result.
2. [10 pts] Consider sets X and Y with n and m elements respectively:
(a) How man elements are there in the Cartesian product $X \times Y$?
(b) How many relations are there between X and Y ?
(c) How many functions are there from X to Y ?
3. [10 pts] Prove, using induction, that if a, b, c are integers values corresponding to the sides of a right triangle. Then for any $n>2, a^{n}+b^{n} \neq c^{n}$.
4. [10 pts] Find the last 2 digits in the decimal representation of the following numbers:
(a) 7^{4}
(b) 7^{102}
(c) 9^{10}
(d) 9^{103}.
5. [10 pts] Find necessary conditions for the maps $f(x)=m x+b$ and $g(x)=a x^{2}+c$ to commute by composition: $f \circ g=g \circ f$.
6. [10 pts] Let A be a finite set. Prove that a map $f: A \longrightarrow A$ that is injective is also bijective. Give an example of an infinite set B and an injective map $f: B \longrightarrow B$ which is not surjective.
7. (a) [5 pts] Show that, for any set A, there is exactly one map f from the empty set \emptyset to A. When is f injective? Surjective?
(b) [5 pts] Describe all maps from a set A to the empty set \emptyset (the answer will depend on A).
8.. [10 pts] Let $x, y \in \mathbb{N}$ be relatively prime. If the product $x y$ is a perfect square, prove that x and y must both be perfect squares. Hint: use the Fundamental Theorem of Arithmetic.
8. [10 pts] Prove that the integers q, r obtained in the division algorithm are unique.
9. [10 pts] Show that if S is a finite set, and $f: S \longrightarrow S$ is bijective, there exist $n>0$ such that

$$
f^{(n)}=f \circ f \cdots \circ f=1_{S}
$$

