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Tesselations of the four-dimensional space
by regular polytopes

Ivan Horozov

In this paper we give a geometric proof of the fact that three out of the six regular
four-dimensional polytopes tessellate the space. Also we prove that the rest three
cannot tessellate the latter. By definition a regular four-dimensional polytope is made
out of one and the same regular three-dimensional polytopes subject to the condition
that from each edge there come out one and the same number of polytopes. Later we
shall use symbols of the type (m,n) or (I, m,n), which we explain next [1].

The symbol (m,n) denotes-a three-dimensional polytope made out of regular n-
gonals so that m n-gonals come out of each vertex. The symbol (I,m,n) denotes
a four-dimensional regular polytope made out of (m,n) polytopes so that I of the
(m, n)-polytopes come out of each edge. Using this notation, we can formulate the
main result as

= ——

Theorem 1 The polytopes (3,3,4), (3,4,3), (4,3,3) tesselate the four-dimensional
space. The regular polytopes — (3,3,3), (3,3,5), (5,3,3) cannot tesselate the space.

In order to prove the theorem, we need the following

Lemma 1 Let ABCO be a tetrahedron |OA| = |OB| = |OC| = 1, a = (BOC,
B=LAOC, v = LAOB, and A = L((AOB),(AOC)) (see fig. 1). Then

cos @ — cos [3 cos y

Y sin 3 sin~y 0
Proof. Let M and N be such points on OA that BM and
CN are both perpendicular to OA. Then BM = sin~ and
CN = sin . The scalar product of BM and CN yields
N
B._)M.C_J)VzBM.C’N.cosAmcosAsinﬁsin'y M4 c
d | .
an : F
BM.CN =(OM —OB)(ON - 00Q) Fig. 1

= (07(:057— Oj)((ﬂcos'y - 56) = cos a — cos  cos 7.
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From the last two equations the lemma follows.
We shall use two simple particular cases of the lemma

e if =+, then
cosa — cos’ 3.

= ; 1
| cos A sin? B (1)
e if a = =+, then
PO ... (2)
1+ cosa =

We shall calculate the angles between two neighbouring sides of the six regular four-
dimensional polytopes. In order to do that we have to calculate the dihedral angles
of each of the five Platonian polytopes. We denote by A{m,n) the angle between two
neighbouring n-gonals of the (m,n) polytope. A similar meaning has the notation
A(l,m,n). For A(3,3), A(3,4) and A(3,5) we can use formula (2). One can consider
the angles between two neighbouring sides of (4,3) and (5,3) as angles between the
latteral sides of regular tetragonal and pentagonal pyramids respectively. In this case
we use formulas (1). Thus we obtain the following table

' 2

“tetrahedron  cos A(3,3) = -:1; g < A(3,3) < ?ﬁ
“cube cos A(3,4) =0 A(3,4) = %

octahedron o A4,3) = —% % < A(4,3) 22% _ B

1 s 2r

dodecahedron cos A(3,5) = “7% 3 < A(3,5) < 3
2

icosahedron  cos A(5,3) = —? A(5,3) > sl

There are three polytopes made out of tetrahedrons — (3,3,3), (4,3,3), and
(5,3,3); one polytope — (3,3,4) made out of cubes; one made out of octahedrons
— (3,4,3) and one made out of dodecahedrons — (3,5,3). We can calculate the
dihedral angles of (3,3,3), (3,3,4), (3,3,5) and (3,4,3) in the following way: Let E
be one of the above polytopes. Let [ be one of its line segments and a, B and v
be the three n-gonals that come out of I. Let A be a hyperplane perpendicular to .
Then A intersects a, B and 7 in @, b, and c respectively. The angles £(a,b) = £(e, ),
L(b,c) = L(B,v) and L(c,a) = L(v,c) are known from the above table. Denote by
P, the polytope determined by a and § and by P,, — the polytope determined by
a and 4. Then the angle between P,s and P, is equal to the dihedral angle at the
line segment a (see fig. 2). Thus we can use formula (1) from the lemma 1.
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Fig. 2 Fig. 3. (3,3,4)

The other two polytopes (4, 3,3) and (5,3, 3) are made out of tetrahedrons. Let A
be a vertex of (4,3,3). Take all the tetrahedrons that come out of A. Qut of each edge
there come out four tetrahedrons. So one can consider these tetrahedros as latteral
sides of a regular pyramid with an octahedron as a base. Knowing A(3,3) and A(4,3)
we can calculate A(4,3,3). In a similar way we can calculate A(5,3,3). Thus we have a
table for the angles between two neighbouring sides of all the four-dimensional regular
polytopes, showing that (3,3,3), (3,3,5) and (5,3,3) cannot tesselate the space:

cos A(3,3,3) = lfzo’:ﬁg? 5= : T <AB,3,3 <2~
cos A(3,3,4) = - j’:o‘:gi;,)“ & ) A(3.3.4) = g
cos A(3,4,3) = - :"zi{jzi)g) - —% A(3,4.3) = %”
GO {0y 5, 5] == 110252%5,)5) - 1_4\/5 A(3,3,3) = 4??
wodtss = 2AOIZT0 . B sk

Now we are going to prove that (3,4,3) can tessellate the four-dimensional space.
By cutting and gluing two polytopes (3,3,4) with edge 1 we can obtain a (3,4,3)
polytope with length of the edge 1. Let K; and K, be the two (3,3,4) polytopes. Let
ABCDA;B,C1D, be a cube of K; and let O be the center of K; (see fig. 3). The
diagonal of K; is v/12+4+124+124+12=21long. SoOA=0B =---=0D, =1. We
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shall call OABCDA,B,C,D; a hyperpyramid Witil base ABCDA,B,C:D,. Cut K,
into eight hyperpyramids with bases — the cubes of K; and common vertex at O.
Glue the bases of the eight hyperpyramids on the sides of K, (fig. 4).

A

Fig. 4

We will prove that the new polytope S is (3,4, 3). o

S is made only of regular quadrilateral pyramids with lateral sides equilateral —
triangles. Consider the hyperpyramid ABCDA;B,C;D;0. The angle between the
base ABCDA;B;C;D; and the lateral sides is %+ Let O and O’ be the vertices of
two hyperpyramids glued to neighbouring cubes of K;. Then obviously OADD; A0’
is lying on one hyperplane. Let us recall that gluing the base of two regular square
pyramids one obtains an octahedron. So OADD; A;Q’ is an octahedron. And for each
quadrilateral pyramid of S there exists another one so that both form one octahedron.
Hence S is made only of octahedrons.

In the above construction there are “two kinds of edges”: edges that belong to K,
and edges that are lateral edges of the glued hyperpyramids. (OA for example.)

From an edge of K, there come out three squares. Considering S, a square of K,
is a part of an octahedron and the three squares coming out of an edge of K; are part
of three different octahedrons. So there come three octahedrons out of an edge of Kj.

From a lateral edge of a hyperpyramid glued to K, there come out just three
pyramids (see fig. 3). For example: From OA there come out the pyramids ABC DO,
ABB, A0, AA;D,DO. But S is made only of octahedrons, so three pyramids are
half part of three different octahedrons.

Thus, there come out just three octa.hedrons out of each edge. By definition it
follows that S is (3,4,3) (see fig. 5 for its projection). As a by-product we obtain that
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if the edge of S is 1 then the distance between two opposite vertices is 2. We will need
this result later.

Obviously, the four-dimensional space could be tessellated by (3,3,4) polytopes.
Take a lattice determined by (3,3,4). We can divide the (3,3,4) polytopes into two
types. Choose on arbitrary (3,3,4) polytope to be of type I. Then each (3,3,4)
polytope that has a common cube with a type I polytope is of type II and each-

polytope that has a common cube with a type II polytope is of type I. Let Oy, O,, .=
be the centers of the type II (3,3,4) polytopes. Cut each type II (3,3,4) into eight
hyperpyramids with bases the cubes of the (3,3,4) and vertices at the center of the
(3,3,4). And there is no hyperpyramid which has a common cube with more than
one (3,3,4) polytope. If we consider a type I (3,3,4) and the eight pyramids glued to

its surface as one polytope S;, then all the S;, S, etc. tessellate the space. We have
already proved that S; (i is fixed) is a (3, 4, 3) polytope. So the four-dimensional space
can be tessellated by (3,4,3) polytopes.

In a similar way we shall prove that (4,3,3) polytopes (see fig. 6) can tessellate
the four-dimensional space. First we shall prove that a (4,3, 3) polytope can be made
from two hyperpyramids whose bases are octahedrons and which lateral sides are -
tetrahedrons. Let both of the bases be ABCA;B,C; and the vertices be O’ and 0"
as it is shown on fig. 7. There come out exactly four tetrahedrons out of an lateral .
edge of one of the two hyperpyramids. For example: From OA’ there come out -
the tetrahedrons ABCO', ABC,0’', AB,C,0'. From an edge of the base of any of
the pyramids, again four tetrahedrons come out. Hence the constructed polytope is
(4,3,3). :

Let us go back to the (3,4,3) polytope (S). We have proved that if the length of an
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Fig. 6. (3,4,3) Fig. 7

edge of (3,4,3) is 1 then the distance between the opposite vertices is 2. Let O be the
center of S. Then the distance between O and an arbitrary vertex of Sis 1. We cut S
into 24 hyperpyramids so that the bases are octahedrons and a commom vertex at O.
All the edges of one of these hyperpyramids have the same length. Hence the lateral
sides are regular tetrahedrons. Take a lattice made by (3,4,3) polytopes. Divide
each of the polytopes into 24 hyperpyramids in such a way that the vertices of the
24 hyperpyramids are in the center of the (3,4,3) polytope. For each hyperpyramid
there is exactly one hyperpyramid such that both have a common base. Obviously,
both hyperpyramids form an (4, 3,3) polytope. This shows that the new lattice could
be made by (4, 3,3) polytopes.

Thus we obtained that (4,3, 3) polytopes tessellate the four-dimensional space.

Fig. 3, 5, 6 are taken from [2]. - N
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