JAvA WoORKSHOP CSI W99

Department of Mathematics and Computer Science
Bronx Community College

July 6, 2017

Java Workshop CSI W99



Java Workshop Day 2

JAVA WORKSHOP DAY 2

@ String CLASS
@ Special Features
@ Relation to char Primitive Type

© DECISION STRUCTURES
@ Simple Decisions
@ Two-Way Decisions
@ Multi-Way Decisions

© ITERATION STRUCTURES
@ while Loop Statements
@ do-while Loop Statements
o for Loop Statements
@ break and continue

Java Workshop CSI W99



String Class Special Features

Relation to char Primitive Type

JAVA WORKSHOP DAY 2

@ String CLASS
@ Special Features
@ Relation to char Primitive Type

Java Workshop CSI W99



String Class Special Features

Relation to char Primitive Type

SPECIAL FEATURES

SPECIAL FEATURES

o The String Class is the most common way to represent
normal text in a Java program. Other classes, such as
Scanner, rely on the String Class exclusively for text
processing.

@ The String Class is in the java.lang package, which is
always automatically imported into any Java program.

@ It is the only class which overloads the Addition Symbol (+),
to represent concatenation. (The Java language does not
support operator overloading—this is the only exception.)

Java Workshop CSI W99



String Class Special Features

Relation to char Primitive Type

A StrING OBJECT IS COMPOSED OF CHARS

A METHOD THAT RETURNS THE CHARS IN A STRING

CharAt (int n) method returns the character at position n of a
String:
If String s = "abcde"; then s.CharAt(3) returns char ’d’.

Java Workshop CSI W99



Simple Decisions
Decision Structures Two-Way Decisions
Multi-Way Decisions

JAVA WORKSHOP DAY 2

© DECISION STRUCTURES
@ Simple Decisions
@ Two-Way Decisions
@ Multi-Way Decisions

Java Workshop CSI W99



Simple Decisions
Decision Structures Two-Way Decisions
Multi-Way Decisions

SIMPLE DECISIONS— IF STATEMENTS

ActioN ONLY NEEDED IF CONDITION IS TRUE

import java.util.Scanner;
public class LetterGrade

{

public static void main(String[] args)

{
Scanner input = new Scanner(System.in);
System.out.print ("Enter Your Average: ");
int average = input.nextInt();
if (average >= 60.0)

System.out.println("You Passed!");
}

Java Workshop CSI W99

<




Simple Decisions
Decision Structures Two-Way Decisions
Multi-Way Decisions

Two-WAY DECISIONS— IF-ELSE STATEMENTS

AcTiON WHETHER CONDITION IS TRUE OR FALSE

public static void main(String[] args)
{
Scanner input = new Scanner(System.in);
System.out.print ("Enter Your Average: ");
int average = input.nextInt();
String letterGrade = "";
if (average >= 60.0)
letterGrade = "P";
else
letterGrade = "F";
System.out.printf ("Your Grade is %s",
letterGrade) ;

Java Workshop CSI W99




Simple Decisions
Decision Structures Two-Way Decisions
Multi-Way Decisions

Two-WAY DECISIONS—CONDITION?TA:B OPERATOR

VALUE DEPENDS ON CONDITION (IF TRUE A, IF FALSE B)

public static void main(String[] args)
{
Scanner input = new Scanner(System.in);
System.out.print ("Enter Your Average: ");
int average = input.nextInt();
System.out.printf ("Your Grade is %s",
average >= 607"P":"F");

Java Workshop CSI W99



Simple Decisions
Decision Structures Two-Way Decisions
Multi-Way Decisions

MuLTI-WAY DECISIONS—NESTED IF-ELSE

MANY CONDITIONS, EACH HAS AN ACTION

if (average >= 90.0)
letterGrade = "A";
else if (average >= 80.0)
letterGrade = "B";
else if (average >= 70.0)
letterGrade = "C";
else if (average >= 60.0)
letterGrade = "D";
else
letterGrade = "F";
System.out.printf ("Your Grade is %s",
letterGrade) ;

V.

Java Workshop CSI W99



Simple Decisions
Decision Structures Two-Way Decisions
Multi-Way Decisions

MuLTI-WAY DECISIONS—SWITCH STATEMENTS

EAcH CONDITION IS A VALUE OF A VARIABLE

boolean passed;
switch(letterGrade)
{
case(’A’):
case(’B’):
case(’C’):
case(’D’):
passed = true;
case(’F’):
passed = false;

Java Workshop CSI W99



while Loop Statements
do-while Loop Statements
for Loop Statements

Iteration Structures break and continue

JAVA WORKSHOP DAY 2

© ITERATION STRUCTURES
@ while Loop Statements
@ do-while Loop Statements
o for Loop Statements
@ break and continue

Java Workshop CSI W99



while Loop Statements
do-while Loop Statements
for Loop Statements

Iteration Structures break and continue

INFINITE LOOPS

NoT INTENDED TO TERMINATE

while (true)

{

// code for event handling, say
// like serving web page requests

Java Workshop CSI W99



while Loop Statements
do-while Loop Statements
for Loop Statements

Iteration Structures break and continue

INDEFINITE LOOPS

ITERATIONS TERMINATE BUT NUMBER IS NOT FIXED

// Add an arbitrary number of input positive ints
int n = 0, total = O;
while (n != -1) //Sentinel value -1 is not a valid
input
{
total += n;
n = input.nextInt(); // enter -1 to exit loop

}

System.out.printf("Sum is %d", total);

Java Workshop CSI W99



while Loop Statements
do-while Loop Statements
for Loop Statements

Iteration Structures break and continue

DEFINITE (COUNTER-CONTROLLED) WHILE LOOPS

COUNTER MANAGED IN DIFFERENT PARTS OF CODE

int total = 0;
int n = 1; // initialize before loop
// find the sum of the integers from 1 to 10
while (n <= 10) // test loop condition
{
total += n;
n++; // increment at end of each iteration

}

System.out.printf("Sum is %d", total);

Java Workshop CSI W99



while Loop Statements
do-while Loop Statements
for Loop Statements

Iteration Structures break and continue

pO-WHILE LOOP TESTS CONDITION AFTER EACH

ITERATION, NOT BEFORE

AT LEAST ONE ITERATION—THE FIRST—MUST HAPPEN

// Add an arbitrary number of input positive ints
int n = 0, total = O;
do
{
total += n;
n = input.nextInt(); // enter -1 to exit loop
t
while (n != -1) //Sentinel value -1 is not a valid
input
System.out.printf ("Sum is %d", total);

y

Java Workshop CSI W99



while Loop Statements
do-while Loop Statements
for Loop Statements

Iteration Structures break and continue

COUNTER IS MANAGED IN FOR STATEMENT

INITIALIZE, TEST LOOP CONDITION, INCREMENT

int total = 0;
// find the sum of the integers from 1 to 10
for (n = 1; n <= 10; n++)
total += n;
System.out.printf("Sum is %d", total);

Java Workshop CSI W99



while Loop Statements
do-while Loop Statements
Iteration Structures e ILEEy Statgnnents
break and continue

BREAK STATEMENTS IN A LOOP

EXITS LOOP

int total = 0;
// find the sum of the integers from 1 to 10

for (n = 1; n <= 10; n++)
{
if (n == 5)
break;
total += n;

}

System.out.printf("Sum is %d", total);

Java Workshop CSI W99




while Loop Statements
do-while Loop Statements
for Loop Statements

Iteration Structures break and continue

BREAK STATEMENTS IN A SWITCH

KEEPS FROM FALLING THROUGH TO NEXT CASE

boolean passed;
switch(letterGrade)
{
case(’F’):
passed = false;
break;
case(’A’):
case(’B’):
case(’C’):
case(’D’):
passed = true;

v
Java Workshop CSI W99




while Loop Statements
do-while Loop Statements
for Loop Statements

Iteration Structures break and continue

CONTINUE STATEMENTS

EXITS CURRENT ITERATION, BUT LOOP CONTINUES

int total = 0;
// find the sum of the integers from 1 to 10
for (n = 1; n <= 10; n++)
{
if (n == 5)
continue;
total += n;

}

System.out.printf ("Sum is %d", total);

Java Workshop CSI W99



	String Class
	Special Features
	Relation to char Primitive Type

	Decision Structures
	Simple Decisions
	Two-Way Decisions
	Multi-Way Decisions

	Iteration Structures
	while Loop Statements
	do-while Loop Statements
	for Loop Statements
	break and continue


