CSI32/E01 Project 4
[bookmark: _GoBack]May 9, 2016 Due: May 25, 2016

On p. 557, there are a series of suggested projects for improving the chatroom.
For project 4, pick one of 16.8 - 16.13
Or...think of a more ambitious improvement...just clear it with me first.
Extra credit will be given for documentation, such as giving sequence diagrams for any new behavior.

Exercise 16.8: The chat room server of Figure 16.10 takes care to terminate a client’s
handler thread if it detects that the connection to that client has failed. However, the
implementation of the chat room client of Figure 16.13 does not gracefully handle
the case of a dropped connection to the server. If the server fails, the client continues
to run but without ever receiving any activity from the server. Although there is no
way to recover the connection, rewrite the client software so that it explicitly informs
the user that the connection has been lost.

Exercise 16.9: Consider the following behavior of our chat room software. When a user
broadcasts a message to the group (such as that on line 5 of Figure 16.14), that
message is then echoed on that user’s client as it is received from the server (as with
line 6 of that figure). Rewrite the client software so that it does not display an echo
of a message sent by this uers. Accomplishing this task does not require any change
to the server’s code nor to the underlying protocol being used.

Exercise 16.10: If a person sends a private message to an unrecognized screen name, our
server ignores the request. However, the user who sent the message is not informed
of this failure. A better protocol is to have the server transmit an UNKNOWNUSER
message back to the client in this scenario. Rewrite both the server and client software
based on such a protocol, ensuring that the user is appropriately informed.

Exercise 16.11: Our chat room software has the following flaw. If a new person connects
to the server using the same screen name as an existing person, the new person’s
connection wipes out the first person’s connection in the _socketLookup dictionary.
A better approach is to adapt the protocol as follows. When a new person sends
an ADD request to the server, the server should reject the request by transmitting
an UNAVAILABLE message back to the client. Rewrite both the server and client
software based on such a protocol, ensuring that the user is given an appropriate
explanation and an opportunity to select a new screen name.

Exercise 16.12: When a new person comes into the chat room, they have no initial idea
who else is in the room. Redesign the network protocol and reimplement the client
and server, so that a person is informed about the existing members when joining.
Exercise 16.13: Extend the chat room software so that private messages can be sent simultaneously
to more than one person.

Exercise 16.14: The software we have written for the chat room server and client work
well together. However a third party could crash our server by writing client-like
software that abuses our protocol. Consider the following interactive session with an
active server s:
>>> s.connect(('localhost', 9000))
>>> s.send('ADD hacker')
10
>>> s.send('\n')
1
>>>
The final transmission causes our server to crash. First, explain the underlying cause
of the crash, and then rewrite the server software to avoid such a scenario.

