NAME

BRONX COMMUNITY COLLEGE
of the City University of New York
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

CSI33 Midterm Exam (Sample)

Directions: Answer all questions. You may refer to the textbook, handouts, or notes
taken in class, but you may not discuss your work with other students. Try to answer
each question in the space provided; use additional paper if necessary.

1. (30) Draw the abstract syntax tree for this postfix expression:
52 -3 %14+ %
Next, evaluate the expression by processing each token, going left-to-right,
using stack operations. Draw the stack after each token is read (include the
operation symbols), labeling each drawing with the token just seen.

2. (15) Draw the box-and-arrow diagram of Python memory after each of the
following three Python programs is executed:

a.

Listl
List2

[[[1, 2], 3],4]
Listl

from copy import *
Listl = [[[1, 2], 3].,4]
List2 = copy(Listl)



from copy import *
Listl = [[[1, 2], 3].,4]
List2 = deepcopy(Listl)

3. (20) This problem uses this definition of the ListNode class:

class ListNode(object):
def __init__(self, item = None, link = None):
self.item = item # data
self.link link # link

a. Using this class definition, write Python code that creates a linked
list of nodes containing integer values beginning with 10 followed
by 21 and then 2013. That is, the node containing 10 will be the
"head” node. (In your code, this node should be the final value
of the variable head. Do not use class methods for a Linked List
class; just use variable names to reference the ListNode objects
you use.) After each line of code, draw the box-and-arrow diagram
for the list structure so far.

b. Next, write Python code that prints ”10-21-2013” by traversing
this list structure using a while loop.



4. (20) Perform a ©-analysis for the running time of each of the following blocks
of Python code. You must show the calculation of how many units of time
each code block takes to run. Use the variable n as the size of the input.

a
i=n
while i > O:
i=1i-2
print (i)

for i in range(n):
j=n
while j > O:
print (j)
j=3/2

5. (15) The Lucas numbers are {2,1,3,4,7,...} where 2 is the “0"*” term, the
“first” term is 1 and the n'” term is the sum of the n — 1% and n — 2¢ terms
thereafter. Write a recursive Python function lucas(n) that calculates the

n' term in this sequence. The function should give 2 for lucas(0), 1 for
lucas (1), 3 for lucas(2), and so on.



