BRONX COMMUNITY COLLEGE
of the City University of New York
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

CSI 33 Section EO01 Project 6
Fall 2017 November 22, 2017
Due: Wednesday, December 6, 2017

Programming Project Number 6: Implementing the AVLTree
Class

This is similar to Programming Exercise 4 on page 483 of the text, except that the programming lan-
guage is C++. Other special requirements as listed below.

You are to complete the AVLTree C++ class, starting with the files AVLTree.cpp and AVLTree.h pro-
vided with the C++ Tree Supplement. (It is described for Python in Chapter 13, section 13.3.) You
also have the files TreeNode.cpp ancd TreeNode.h.

AVLTree.cpp implements a constructor method (AVLTree()) and a partially written insertRec method
which handles rebalancing the tree in the case of inserting an item into the left or right subtrees of the
left child of the current root. You must add the code to rebalance the tree after inserting an item into
either subtree of the right child of the current root. This must be done whenever the heights of the left
and right subtrees, as given by get_height (), differ by 2. (Hint: Since this is a mirror-image of the case
for the left child, you can take the code for the left child and modify it by replacing each occurrence
of “right” with “left” and vice-versa. You may also need to switch < and > when comparing item and
node values.)

A precondition for insert is that the item value does not already exist in the tree. If it does, raise a
value exception in the insert method. A precondition for delete is that the value being deleted does
exist in the tree. If it does not, you must raise a value exception.

Use the provided test program to show that insert, delete, and find will work. This will include code to
actually display the structure of the tree, to verify that it remains balanced after an insertion operation
(or deletion—see below).

Finally, you must modify the delete_ method so that it also leaves the tree balanced. That is, after the
usual BST deletion, additional code must run to check the heights of the two subtrees, and to rebalance
the tree at that node, by single or double rotation, if it is unbalanced. (Hint: it is the same algorithm
used to rebalance the subtrees when inserting.)

Raising exceptions when preconditions fail in _insertRec and
_deleteRec

Preconditions should be checked by raising exceptions when they fail. A precondition for _insertRec is
that a value being inserted does not already exist in the tree. This happens when value == t->_item.
A similar precondition for _deleteRec would be that a value being deleted must be present in the tree.
If it is not, raise an out_of _range exception. (This should happen for the base case, when t is NULL).
To see the code to do this, you can look at the BST class, or the _findRec method.



