BRONX COMMUNITY COLLEGE
of the City University of New York
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

CSI 33 Section EO01 Project 3
Fall 2017 October 2, 2017
Due: Monday, October 16, 2017

Programming Project Number 3: Implementation of Stack and
Queue Classes

Stack ADT

You are to define a Stack class which implements the Stack ADT, that is, it will have the methods
push, pop, top, size, and __init__. You should also implement a unit-testing file for this class.

Queue ADT

You are to define a Queue class which implements the Queue ADT, that is, it will have the methods
enqueue, dequeue, front, size, and __init__. You should also implement a unit-testing file for this
class. The two classes can be tested together by importing them into the palindrome.py file provided
with Chapter 5.

Implementation Using Linked Structures

Both classes, Stack and Queue, will be implemented using a linked data strategy. That is, you will
use ListNode objects from the class of that name defined in Chapter 4. You should import the file
ListNode.py into your project for that purpose. Warning: you will not receive credit if you define your
Stack (or Queue) class using the LList class defined in the text, even though it uses ListNodes—it has
the same interface as a Python List, so you would not be creating any new code. You must use the
ListNode class directly in your implementations. The hints in the next section give you ways you can
still use ListNodes using coding ideas from LList class methods.

Hints on Implementation Using Linked Structures

A Stack is accessible at one end only, its top. This corresponds exactly to the head attribute of a linked
list. Pushing and popping is then just adding a node to or removing a node from the head of a linked
list. You can use code from the LList class of Chapter 4, making any necessary modifications. For
example, if the LList class has an attribute called head, then for the Stack class, change the code so
that the attribute is called top.

A Queue must be accessed from either of two ends, its front or its back. Thre linked structure for
a queue will therefore need two attributes, _front and _back. (Follow the philosophy of thinking all
ADT attributes as private, using an underscore as the first character. In languages like C++4, this will
indicate privacy which can be enforced.) The dequeue method should be implemented exactly like the
pop method of the Stack class, removing a node from the front of the Queue. The enqueue method will
be more complicated, since it must add a new ListNode object to the back of the Queue.

One more warning about implementing the Queue class: there is already a Queue module in the
Python library, so if you try to implement your Queue class in a file called Queue.py and then try to
say from Queue import Queue it will not use your file. You must call your file MyQueue.py and you
must say from MyQueue import Queue. Chapter 5 shows an example of using the Queue class which
does exactly this, in palindrome.py.

Finally, in exploring programming techniques using linked structures, always draw box-and-arrow
diagrams to illustrate the Python statements of the methods you write, as we have done in class and in
the text.



