BRONX COMMUNITY COLLEGE
of the City University of New York
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

CSI33 Section E01 Project 2
Fall 2017 September 11, 2017
Due: Monday, September 25, 2016

A More Efficient Dataset Class for Test Scores

Introduction

This project is the second part of Programming Exercise 7 of Chapter 2, on page 72. You will create a
folder called DatasetIl which will contain the same files used to begin the previous project, Dataset.py
and test Dataset.py. You will modify Dataset.py to provide a different implementation of the Dataset
ADT from the one you provided in project 1. Specifically, the concrete representation will not use a
Python list, yet it will have attributes which provide enough information to give statistics on any num-
bers which have been added to the Dataset via the add method. No matter how many scores have been
added to a Dataset, the size of the object remains constant, and the time to perform any of the statistical
queries is constant (©(1)) as well. A possible implementation strategy to do this is outlined below. The
test program file, test Dataset.py, will be exactly the same as in the first project, since the interface of
the Dataset ADT which you are testing is not changing in this project—only the concrete representation.

Implementation Strategy

The idea is to provide a small set of attributes which represent the state of a Dataset, after any num-
ber of scores have been added. The values of these attributes provide enough information to calculate
statistics (or simply return attribute values) for the scores added so far.

Methods such as min or max will just return values of private attributes representing the current smallest
or greatest score added so far. The real work of deciding these attribute values will be done inside the
add method. For example, when a new score is added, it will be compared with previous min and max
attributes to see if these old values need to change.

The current number of scores added so far is incremented by one each time a score is added.
Similarly, the current total of scores is updated each time a new score is added.

These numbers can be used to calculate the average whenever the average is needed by the average
method.

Another attribute will be needed, called sum_of _squares, to calculate the standard deviation. This will
hold the value of the sum of the squares of the scores added so far. The formula for standard deviation
in chapter 2, on page 59, can then be used to calculate the returned value for the std_dev method.
(Chapter 1 uses a different formula, but it requires knowing every individual score in the dataset.



