
Outline

CSI33 Data Structures

Department of Mathematics and Computer Science
Bronx Community College

November 27, 2017

CSI33 Data Structures

Outline

Outline

1 Chapter 13: Heaps, Balanced Trees and Hash
Tables

Priority Queues and Heaps

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

Outline

1 Chapter 13: Heaps, Balanced Trees and Hash
Tables

Priority Queues and Heaps

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

Priority Queues

A Priority Queue is a container for items with different
priorities.

The interface of a Priority queue resembles that of a queue,
since an item can be put into the priority queue (enqueued)
at any time.

The item with the highest priority is the first one to be
removed from the priority queue (dequeued). (Rather than
first-in-first-out, as a normal queue, a priority queue is
best-in-first-out.)

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

Priority Queues

Applications:

A hospital emergency room.

An event handler in a computer’s operating system. Different
processes running at the same time share access to the CPU.
Essential services have higher priority than user applications.

Pattern-matching algorithms (voice or handwriting
recognition) where input is compared with stored patterns.
The best matches will get the highest scores and saved in a
priority queue for further processing.

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

Priority Queues

This would be the interface to a Python class implementing the
Priority Queue ADT:
class PQueue(object):

def enqueue(self, item, priority):

’’’post: item is inserted with specified priority’’’

def first(self):

’’’post: returns, but does not remove, highest priority

item’’’

def dequeue(self):

’’’post: removes and returns the highest priority item’’’

def size(self):

’’’post: returns the number of items’’’

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

Implementing a Priority Queue As A Heap

Worst-case running times for structures we have seen:

Sorted list: enqueue is Θ(n). An array would allow Θ(log n)
to find the position (Binary search), but Θ(n) is needed to
insert by moving the higher items out of the way.

Linked list: enqueue or dequeue is Θ(n). If the list is sorted,
enqueue takes Θ(n) to find the position at which to insert
the item. Otherwise, dequeue takes Θ(n) to go through all
items in an unsorted list to find the highest priority item.

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

Implementing a Priority Queue As A Heap

For better performance, we use a new structure; a Binary Heap:

A complete binary tree, whose nodes are labeled with integer
values (priorities).

Has the Heap property: For any node, no node below it has a
higher priority.

Notice how fast it is to find the node with the highest priority
(it’s at the top of the heap).

The enqueue method is called the insert method for the
Heap class.

The dequeue method is called the delete max method for
the Heap class.

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

Implementing a Priority Queue As A Heap

A tree with the heap property

2 5 0

6 7

9

1 3

8 4

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

Implementing a Priority Queue As A Heap

A tree without the heap property

2 5 0

7

9

1 3

86

4

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

Implementing a Priority Queue As A Heap

Implementation issues:

The enqueue and dequeue methods are implemented so they
preserve the heap property.

To save space, the complete binary tree is implemented as an
array. (The root is at index 1. The children of the node at
index i are at indexes 2 * i and 2 * i + 1.)

We will use Python and its list class to implement binary
heaps, so resizing will not be a problem when items are
enqueued.

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

delete max

Want to remove the highest priority item

2 0

7 6

8

1 3

5

4

9

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

delete max

Save top item and replace with last

2 0

7 6

8

1 3

5

4

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

delete max

Percolate down until...

2 0

7 6 1 3

5

8

4

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

delete max

The heap property is restored

2 0

6 1 3

5

8

7

4

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

delete max

def delete max(self):

’’’pre: heap property is satisfied

post: maximum element in heap is removed and returned’’’

if self.heap size > 0:

max item = self.heap[1]

self.heap[1] = self.heap[self.heap size]

self.heap size -= 1

self.heap.pop()

if self.heap size > 0:

self. heapify(1)

return max item

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

delete max

def heapify(self, position):

’’’pre: heap property is satisfied below position

post: heap property is satisfied at and below position’’’

item = self.heap[position]

while position * 2 <= self.heap size:

child = position * 2

if right child, determine maximum of two children

if (child != self.heap size and

self.heap[child+1] > self.heap[child]):

child += 1

if self.heap[child] > item:

self.heap[position] = self.heap[child]

position = child

else:

break

self.heap[position] = item

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

insert

Want to insert item with priority 8

9

7 5

6 4 1 3

2 0

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

insert

Add the new item at the end

2 0

6 4

7

9

1 3

5

8

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

insert

Percolate up until...

2 0

6

7

9

1 3

5

8

4

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

insert

The heap property is restored

2 0

6

9

1 3

58

7

4

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

insert

def insert(self, item):

’’’pre: heap property is satisfied

post: item is inserted in proper location in heap’’’

self.heap size += 1

extend the length of the list

self.heap.append(None)

position = self.heap size

parent = position // 2

while parent > 0 and self.heap[parent] < item:

move item down

self.heap[position] = self.heap[parent]

position = parent

parent = position // 2

put new item in correct spot

self.heap[position] = item

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

init and build heap

def init (self, items=None):

’’’post: a heap is created with specified items’’’

self.heap = [None]

if items is None:

self.heap size = 0

else:

self.heap += items

self.heap size = len(items)

self. build heap()

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

init and build heap

def build heap(self):

’’’pre: self.heap has values in 1 to self.heap size

post: heap property is satisfied for entire heap’’’

1 through self.heap size

for i in range(self.heap size // 2, 0, -1): # stops at 1

self. heapify(i)

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

Heapsort

def heapsort(self):

’’’pre: heap property is satisfied

post: items are sorted’’’

sorted size = self.heap size

for i in range(0, sorted size - 1):

Since delete max calls pop to remove an item,

append dummy value to avoid an illegal index.

self.heap.append(None)

item = self.delete max()

self.heap[sorted size - i] = item

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

Heapsort

Running times:

insert is Θ(log n).

delete max is Θ(log n).

heapify is Θ(log n).

build heap is Θ(n).

heapsort is Θ(n log n).

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

Notes on Heap and Priority Queue
Implementations

Using Python

Use the Heap class as defined in this chapter.

The enqueue method is called the insert method for the
Heap class.

The dequeue method is called the delete max method for
the Heap class.

Node data will be tuples: (priority, item); Python will
interpret (priority1, item1) < (priority2, item2) as
priority1 < priority2

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash TablesPriority Queues and Heaps

Notes on Heap and Priority Queue
Implementations

Using C++

Write the Heap class as a C++ template class with private
priority and item data members.

Overload < and other comparison operators to compare
priorities.

Or just use the Priority Queue template class from the
Standard Template Library.

CSI33 Data Structures

	Chapter 13: Heaps, Balanced Trees and Hash Tables
	Priority Queues and Heaps

