CSI33 DATA STRUCTURES

Department of Mathematics and Computer Science
Bronx Community College

November 27, 2017

SE
B
CSI33 Data Structures

Outline

OUTLINE

@ CHAPTER 13: HEAPS, BALANCED TREES AND HASH
TABLES
@ Priority Queues and Heaps

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

OUTLINE

@ CHAPTER 13: HEAPS, BALANCED TREES AND HASH
TABLES
@ Priority Queues and Heaps

-
Wiliii

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

PRIORITY QUEUES

@ A Priority Queue is a container for items with different
priorities.

@ The interface of a Priority queue resembles that of a queue,
since an item can be put into the priority queue (enqueued)
at any time.

@ The item with the highest priority is the first one to be
removed from the priority queue (dequeued). (Rather than
first-in-first-out, as a normal queue, a priority queue is
best-in-first-out.)

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

PRIORITY QUEUES

Applications:

@ A hospital emergency room.

@ An event handler in a computer’s operating system. Different
processes running at the same time share access to the CPU.
Essential services have higher priority than user applications.

e Pattern-matching algorithms (voice or handwriting
recognition) where input is compared with stored patterns.
The best matches will get the highest scores and saved in a
priority queue for further processing.

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

PRIORITY QUEUES

This would be the interface to a Python class implementing the
Priority Queue ADT:
class PQueue(object):
def enqueue(self, item, priority):
’’’post: item is inserted with specified priority’’’
def first(self):
’’’post: returns, but does not remove, highest priority
item’’’
def dequeue(self):
’?’post: removes and returns the highest priority item’’’
def size(self):

’?’post: returns the number of items’’’

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

IMPLEMENTING A PRIORITY QUEUE As A HEaP

Worst-case running times for structures we have seen:

o Sorted list: enqueue is ©(n). An array would allow ©(log n)
to find the position (Binary search), but ©(n) is needed to
insert by moving the higher items out of the way.

o Linked list: enqueue or dequeue is ©(n). If the list is sorted,
enqueue takes ©(n) to find the position at which to insert
the item. Otherwise, dequeue takes ©(n) to go through all
items in an unsorted list to find the highest priority item.

-
Wiliii

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

IMPLEMENTING A PRIORITY QUEUE As A HEaP

For better performance, we use a new structure; a Binary Heap:

@ A complete binary tree, whose nodes are labeled with integer
values (priorities).

@ Has the Heap property: For any node, no node below it has a
higher priority.

@ Notice how fast it is to find the node with the highest priority
(it's at the top of the heap).

@ The enqueue method is called the insert method for the
Heap class.

o The dequeue method is called the delete max method for
the Heap class.

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

IMPLEMENTING A PRIORITY QUEUE As A HEaP

A TREE WITH THE HEAP PROPERTY

T

-
Wiliii

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

IMPLEMENTING A PRIORITY QUEUE As A HEaP

A TREE WITHOUT THE HEAP PROPERTY

\
-]

-
Wiliii

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

IMPLEMENTING A PRIORITY QUEUE As A HEaP

Implementation issues:

@ The enqueue and dequeue methods are implemented so they
preserve the heap property.

@ To save space, the complete binary tree is implemented as an
array. (The root is at index 1. The children of the node at
index i are at indexes 2 * iand 2 * i + 1.)

@ We will use Python and its list class to implement binary
heaps, so resizing will not be a problem when items are
enqueued.

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

DELETE_MAX

WANT TO REMOVE THE HIGHEST PRIORITY ITEM

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

DELETE_MAX

SAVE TOP ITEM AND REPL

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

DELETE_MAX

PERCOLATE DOWN UNTIL...

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

DELETE_MAX

THE HEAP PROPERTY IS RESTORED

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

DELETE_MAX

def delete max(self):
’?’pre: heap property is satisfied
post: maximum element in heap is removed and returned’’’
if self.heap_size > O:
max_item = self.heap[1]
self.heap[1] = self.heap[self.heap_size]
self .heap_size -= 1
self.heap.pop()
if self.heap._size > O:
self. heapify (1)

return max_item

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

DELETE_MAX

def _heapify(self, position):
’’’pre: heap property is satisfied below position
post: heap property is satisfied at and below position’’’
item = self.heap[position]
while position * 2 <= self.heap_size:
child = position * 2
if right child, determine maximum of two children
if (child != self.heap._size and
self.heap[child+1] > self.heap[child]):
child += 1
if self.heapl[child] > item:
self .heap[position] = self.heap[child]
position = child
else:
break -
it

self.heap[position] = item

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

INSERT

WANT TO INSERT ITEM WITH PRIORITY 8

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

INSERT

ADD THE NEW ITEM AT THE END

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

INSERT

-
Wiliii

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

INSERT

THE HEAP PROPERTY IS RESTORED

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

INSERT

def insert(self, item):

’?’’pre: heap property is satisfied

post: item is inserted in proper location in heap’’’

self.heap_size += 1

extend the length of the list

self.heap.append(None)

position = self.heap_size

parent = position // 2

while parent > O and self.heap[parent] < item:
move item down
self .heap[position] = self.heap[parent]
position = parent
parent = position // 2

put new item in correct spot

ia_
self .heap[position] = item L

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

__INIT__ AND _BUILD_HEAP

def __init__(self, items=None):
’?’’post: a heap is created with specified items’’’
self.heap = [None]
if items is None:
self .heap_size = 0
else:
self .heap += items
self .heap_size = len(items)
self. build_-heap()

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

__INIT__ AND _BUILD_HEAP

def _build_heap(self):
’’’pre: self.heap has values in 1 to self.heap_size
post: heap property is satisfied for entire heap’’’
1 through self.heap_size
for i in range(self.heap_size // 2, 0, -1): # stops at 1
self. heapify(i)

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

HEAPSORT

def heapsort(self):

’’’pre: heap property is satisfied

post: items are sorted’’’

sorted_size = self.heap_size

for i in range(0, sorted_size - 1):
Since deletemax calls pop to remove an item,
append dummy value to avoid an illegal index.
self .heap.append(None)
item = self.deletemax()

self .heap[sorted_size - i] = item

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

HEAPSORT

Running times:

e insert is O(log n).
delete max is ©(log n).
_heapify is ©(log n).
_build_heap is ©(n).
heapsort is ©(nlog n).

e 6 o6 o

-
Wiliii

CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

NOTES ON HEAP AND PRIORITY QUEUE

IMPLEMENTATIONS

USING PYTHON

o Use the Heap class as defined in this chapter.

o The enqueue method is called the insert method for the
Heap class.

o The dequeue method is called the delete max method for
the Heap class.

o Node data will be tuples: (priority, item); Python will
interpret (priorityl, iteml) < (priority2, item2) as
priorityl < priority2

SE
B
CSI33 Data Structures

Chapter 13: Heaps, Balanced Trees and Hash Ta| Priority Queues and Heaps

NOTES ON HEAP AND PRIORITY QUEUE

IMPLEMENTATIONS

Using C++

o Write the Heap class as a C++ template class with private
priority and item data members.

@ Overload < and other comparison operators to compare
priorities.

@ Or just use the Priority Queue template class from the
Standard Template Library.

SE
B
CSI33 Data Structures

	Chapter 13: Heaps, Balanced Trees and Hash Tables
	Priority Queues and Heaps

