
favicon

Outline

CSI33 Data Structures

Department of Mathematics and Computer Science
Bronx Community College

November 20, 2017

CSI33 Data Structures

favicon

Outline

Outline

1 C++ Supplement 1.3: Balanced Binary Search
Trees

Balanced Binary Search Trees
AVL Trees

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

Outline

1 C++ Supplement 1.3: Balanced Binary Search
Trees

Balanced Binary Search Trees
AVL Trees

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

Improving The Worst-Case Performance for
BSTs

The Worst Case Scenario

In the worst case, a binary search tree looks like a linked list,
with all the links going the same way.

The performance of the important methods (find, insert,

delete) is Θ(n).

1

2

3

4

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

Improving The Worst-Case Performance for
BSTs

Goal: Keeping Any BST “Balanced”

Ideally, to prevent a BST from becoming too unbalanced, it
would be filled so that as many nodes as possible have left
and right subtrees. This would be equivalent to being a
complete binary tree.

This is impractical, since it would take too long to rearrange
the nodes for the tree to keep this shape every time a new
node gets added or deleted.

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

Improving The Worst-Case Performance for
BSTs

A Workable Compromise

We will only insist that, for a BST to be “balanced”, any
node will have the property that the depths of its left and
right subtrees will differ by one level at most.

This can be efficiently enforced each time a node is inserted or
deleted.

The worst case height is about 1.44 log(n).

The performance of the insert, delete, and find operations is
Θ(log n).

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

Basic Facts

The AVL Tree property

An AVL tree is a binary search tree (so it has the Binary Search
Property), which has the additional AVL Tree Property that for
every node, the depths of its left and right subtrees will differ by at
most one level.

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

Basic Facts

The AVL Tree property

An AVL tree is a binary search tree (so it has the Binary Search
Property), which has the additional AVL Tree Property that for
every node, the depths of its left and right subtrees will differ by at
most one level.

Inventors

Such a tree is called an AVL Tree after its two co-inventors, G. M.
Adelson-Velskii and E. M. Landis.

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

AVL Trees: Insertion

Normal BST Insertion

A value gets inserted into a BST by comparing its value with
the current node (starting with the root).

If the value is less, it changes the current node to the left
subtree if it exists.

If the value is greater, it changes the current node to the right
subtree if it exists.

If the value is equal, an error has occurred: value is already in
the tree.

The new node is made a leaf when the subtree on that side
doesn’t exist.

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

AVL Trees: Insertion

AVL Insertion: Overview

The height of each subtree is saved as a new attribute of
every TreeNode object.

Perform the insertion to the proper subtree (say, the left
subtree).

If the left subtree height is now 2 more than the right subtree,
rebalance the tree at the current node.

Similarly for the right subtree.

Height of the current node = max(height left subtree, height
right subtree)+1.

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

AVL Trees: Insertion

AVL Insertion: Overview

void AVLTree::insert(int value)

{
root = insertRec(root, value);

}

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

AVL Trees: Insertion

AVL Rebalancing

TreeNode *AVLTree:: insertRec(TreeNode* t, int value)

{
if (t == NULL)

t = new TreeNode(value, NULL, NULL);

else if (value < t-> item)

{
t-> left = insertRec(t-> left, value);

if (getHeight(t-> left) - getHeight(t-> right) == 2)

//rebalance?

{ // inserted into which subtree of left child?

if (value < t-> left-> item)

t = leftSingleRotate(t); // left subtree

else

t = rightLeftRotate(t); // right subtree

}
}

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

AVL Trees: Insertion

AVL Rebalancing: Double Rotation
TreeNode *AVLTree::

rightLeftRotate(TreeNode *t)

{
t-> left = rightSingleRotate(t-> left);

t = leftSingleRotate(t);

return t;

}

3

5

4

2

6

8

t

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

AVL Trees: Insertion

AVL Right Subtree Insertion: Rebalancing at node t
TreeNode *AVLTree::

rightSingleRotate(TreeNode *t)

{
TreeNode *grandparent = t;

TreeNode *parent = t-> right;

grandparent-> right = parent-> left;

parent-> left = grandparent;

t = parent;

// adjust heights of grandparent,

parent

return t;

}

3

5

4

2

6

8t

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

AVL Trees: Insertion

AVL Right Subtree Insertion: Rebalancing at node t
TreeNode *AVLTree::

rightSingleRotate(TreeNode *t)

{
TreeNode *grandparent = t;

TreeNode *parent = t-> right;

grandparent-> right = parent-> left;

parent-> left = grandparent;

t = parent;

// adjust heights of grandparent,

parent

return t;

}

5

NONE

4

2

3t, grandparent

parent

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

AVL Trees: Insertion

AVL Right Subtree Insertion: Rebalancing at node t
TreeNode *AVLTree::

rightSingleRotate(TreeNode *t)

{
TreeNode *grandparent = t;

TreeNode *parent = t-> right;

grandparent-> right = parent-> left;

parent-> left = grandparent;

t = parent;

// adjust heights of grandparent,

parent

return t;

}

42

3
5

NONE

t, grandparent parent

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

AVL Trees: Insertion

AVL Right Subtree Insertion: Rebalancing at node t
TreeNode *AVLTree::

rightSingleRotate(TreeNode *t)

{
TreeNode *grandparent = t;

TreeNode *parent = t-> right;

grandparent-> right = parent-> left;

parent-> left = grandparent;

t = parent;

// adjust heights of grandparent,

parent

return t;

}

grandparent

NONE

4

5

3

2

t, parent

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

AVL Trees: Insertion

AVL Right Subtree Insertion: Rebalancing at node t
TreeNode *AVLTree::

rightSingleRotate(TreeNode *t)

{
TreeNode *grandparent = t;

TreeNode *parent = t-> right;

grandparent-> right = parent-> left;

parent-> left = grandparent;

t = parent;

// adjust heights of grandparent,

parent

return t;

}

2

6

8

4

5

3

parent
t

grandparent

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

AVL Trees: Insertion

AVL Left Subtree Insertion: Rebalancing at node t
TreeNode *AVLTree::

leftSingleRotate(TreeNode *t)

{
TreeNode *grandparent = t;

TreeNode *parent = t-> left;

grandparent-> left = parent-> right;

parent-> right = grandparent;

t = parent;

// adjust heights of grandparent,

parent

return t;

}

2

6

8

4

5

3

t

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

AVL Trees: Insertion

AVL Left Subtree Insertion: Rebalancing at node t
TreeNode *AVLTree::

leftSingleRotate(TreeNode *t)

{
TreeNode *grandparent = t;

TreeNode *parent = t-> left;

grandparent-> left = parent-> right;

parent-> right = grandparent;

t = parent;

// adjust heights of grandparent,

parent

return t;

}
NONE

8

6

2

5

3

4

t, grandparent

parent

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

AVL Trees: Insertion

AVL Left Subtree Insertion: Rebalancing at node t
TreeNode *AVLTree::

leftSingleRotate(TreeNode *t)

{
TreeNode *grandparent = t;

TreeNode *parent = t-> left;

grandparent-> left = parent-> right;

parent-> right = grandparent;

t = parent;

// adjust heights of grandparent,

parent

return t;

}

8

6

NONE

2

5

3

4

parent t, grandparent

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

AVL Trees: Insertion

AVL Left Subtree Insertion: Rebalancing at node t
TreeNode *AVLTree::

leftSingleRotate(TreeNode *t)

{
TreeNode *grandparent = t;

TreeNode *parent = t-> left;

grandparent-> left = parent-> right;

parent-> right = grandparent;

t = parent;

// adjust heights of grandparent,

parent

return t;

}

grandparent

2

5

8

63

4

NONE

t, parent

CSI33 Data Structures

favicon

C++ Supplement 1.3: Balanced Binary Search Trees
Balanced Binary Search Trees
AVL Trees

AVL Trees: Insertion

AVL Left Subtree Insertion: Rebalancing at node t
TreeNode *AVLTree::

leftSingleRotate(TreeNode *t)

{
TreeNode *grandparent = t;

TreeNode *parent = t-> left;

grandparent-> left = parent-> right;

parent-> right = grandparent;

t = parent;

// adjust heights of grandparent,

parent

return t;

}

2 4

3

8

6

5

t

CSI33 Data Structures

	C++ Supplement 1.3: Balanced Binary Search Trees
	Balanced Binary Search Trees
	AVL Trees

