
Outline

CSI33 Data Structures

Department of Mathematics and Computer Science
Bronx Community College

November 6, 2017

CSI33 Data Structures

Outline

Outline

1 Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Outline

1 Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Proper Memory Management

Classes which allocate memory must manage it properly. Default
behavior of C++ is insufficient:

The assignment operation will not perform a “deep copy” of
objects using references (pointers).

Rather, the pointers themselves will be copied, leading to
shared memory.

Shared memory requires reference counting to be properly
deallocated. This is not built into C++, and is hard to
program.

C++ objects will not even deallocate memory they have
allocated themselves unless made to do so by the
programmer.

CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Proper Memory Management

A class must deallocate memory it allocates. Each object,
when its lifetime is over, should free any memory it has used.

A class must copy, not share, referenced object data when an
existing object is being assigned a value from another object.

A class must copy, not share, referenced object data when a
new object is being created using the value of another.

CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Destructor

The destructor for a class is a special member function
written to perform any cleanup work at the end of an object’s
lifetime. If no such special work is necessary, a destructor
need not be provided.

A destructor is required for dynamic memory classes to
prevent a memory leak (an object must deallocate any
memory it has allocated when it has done its work.

The destructor’s name is tilde (˜) followed by the class name.

The destructor takes no parameters.

The destructor is called automatically when an object goes
out of scope.

The destructor is called automatically when the delete

operator is called for a pointer to an object in that class.

CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Copy Constructor

When a constructor for a class is called with an existing object
of the class as an actual parameter, the data members are
copied into the memory allocated for the new object. In
C++, this is the behavior of the default copy constructor.
What will not happen automatically is a deep copy of the
memory pointed to by data members which are pointers. To
force a deep copy, the copy constructor must be explicitly
defined for the class.

CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Assignment Operator

When an existing object of a class is assigned a value which is
an existing object of the class, the data members are copied
into the memory of the assigned-to object. In C++, this is
the behavior of the default assignment operator. What will
not happen automatically is a deep copy of the memory
pointed to by data members which are pointers. To force a
deep copy, the assignment operator, operator=, must be
explicitly defined for the class.

CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Example Dynamic Array Class: List

class List {
public:

List(size t capacity=10); // constructor

List(const List &a); // copy constructor

~List(); // destructor

int& operator[](size t pos); // bracket operator

List& operator=(const List &a); // assignment

List& operator+=(const List &a); // += operator

void append(int item);

size t size() const { return size ; }
private:

void copy(const List &a);

void resize(size t new size); //larger array

int *data ; // dynamic array

size t size ; // size of dynamic array

size t capacity ; }; // capacity of dynamic array

}; CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Example Dynamic Array Class: List

List::List(size t capacity)

{
data = new int[capacity];

capacity = capacity;

size = 0;

}

CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Example Dynamic Array Class: List

List::~List() {
delete [] data ;

}

CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Example Dynamic Array Class: List

List::List(const List &list)

{
copy(list);

}
void List::copy(const List &list) {

size t i;

size = list.size ;

capacity = list.capacity ;

data = new int[list.capacity];

for (i=0; i<list.capacity ; ++i) {
data [i] = list.data [i];

}
}

CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Example Dynamic Array Class: List

List& List::operator=(const List &list)

{
if (&list != this) {

// deallocate existing dynamic array

delete [] data ;

// copy the data

copy(list);

}
return *this;

}

CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Reference Return Types

Reference return types are allowed only when a function returns
the address of data that will still be there after the function call is
finished. (This disallows returning a reference to a local variable.)
You can return a reference to a data member (attribute) of an object
in the class to which the member function belongs. In the List

class, this is done in the implementation of the [] operator to allow
indexed data to be on the left side of an assignment statement, as in

List l(3);

l[0] = 0;

l[1] = 1;

l[2] = 2;

CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Reference Return Types

inline int& List::operator[](size t pos)

{
return data [pos];

}

CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Memory Leaks

When memory that has been allocated is not deallocated in some
scenario, then each time the scenario occurs another chunk of
memory becomes unavailable to the system which is trying to reuse
memory. This can happen thousands or millions of times. As it gets
harder to find available memory when it is needed, the operating
system tries to use the disk drive to keep memory it is using (this is
called paging or swapping). This slows the system down, since disk
access is much slower than semiconductor memory. Eventually the
system crashes.
Memory leaks are hard to find and fix, which is why they exist in
commercially sold software. Rebooting your PC every once in a
while to refresh memory can work around this problem.

CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Memory Leaks

// This code is incorrect

{
int *x;

x = new int;

*x = 3;

x = new int;

*x = 4;

delete x;

}

CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Accessing Invalid Memory

Accessing invalid memory means reading or writing on memory
which has been deallocated (and reallocated for a different task).
This leads to unpredictable and incorrect behavior in a program.
Reading such data will produce garbage since the memory has been
reallocated and reused by a different task running at the same time.
Writing on such memory will cause the task which now uses it to
crash, since its contents have been changed.

CSI33 Data Structures

Chapter 10: C++ Dynamic Memory
Dynamic Memory Classes
Dynamic Memory Errors

Accessing Invalid Memory

int main() // This program is incorrect

{
int *y = new int;

delete y;

*y = 3;

return 0;

}

CSI33 Data Structures

	Chapter 10: C++ Dynamic Memory
	Dynamic Memory Classes
	Dynamic Memory Errors

