CSI33 DATA STRUCTURES

Department of Mathematics and Computer Science
Bronx Community College

October 18, 2017

-
Wiliii

CSI33 Data Structures

Outline

OUTLINE

@ CHAPTER 8: A C++ INTRODUCTION FOR PYTHON
PROGRAMMERS
o C++ History And Background
@ Comments, Blocks Of Code, ldentifiers and Keywords
@ Data Types And Variable Declarations
@ Include Statements, Namespaces, and Input/Output
@ The Build Process

SE
B
CSI33 Data Structures

C++ History And Background

Comments, Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro Data T s And Variable Declarations

Include temen Namespaces, and Input/Ou

The Build Process

OUTLINE

@ CHAPTER 8: A C++ INTRODUCTION FOR PYTHON
PROGRAMMERS
o C++ History And Background
Comments, Blocks Of Code, Identifiers and Keywords
Data Types And Variable Declarations
Include Statements, Namespaces, and Input/Output
The Build Process

®© 6 6 o

SE
B
CSI33 Data Structures

C++4 History And Background
Comments, Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro Data Types And Variable Declarations

Include Statements, Namespaces, and Input/Ou
The Build Process

HISTORY

EARLY LANGUAGES - ANCESTORS OF C+-+

e 1967 - BCPL (Martin Richards, Cambridge)
e 1969 - B (Thomson and Ritchie, AT&T)

@ 1969 - UNIX Operating System (Kernigan, Ritchie and
Thomson, AT&T)

@ 1970 - C Language (Kernigan and Ritchie, AT&T)
@ 1980 - C with Classes (Bjarne Stroustrup, AT&T)

e 1985 - C++ (Borland, Microsoft, IBM and AT&T)
@ 1990 - Standard Template Library (STL)

o 1998 - ANSI standards established for C4++ ﬁlm

y

CSI33 Data Structures

C++4 History And Background

Comments, Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro Data Types And Variable Declarations

Include Statements, Namespaces, and Input/Ou

The Build Process

PYTHON TRANSLATION PROCESS

ION

Python Translation

‘ Python Source (.py file) ‘

Python Interpreter

‘ Libraries ‘ ‘ Python Byte Code (.pyc file) ‘ ‘ Imported Python Bytecode

Python Interpreter

Translates and executes

one bytecode instruction

at a time ﬁﬁ

v

CSI33 Data Structures

C++4 History And Background

Comments, Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro Data Types And Variable Declarations

Include Statements, Namespaces, and Input/Ou

The Build Process

C+-+ TRANSLATION PROCESS - “BUILDING” A

PROGRAM

C++ Translation (Compilation)

C++ Source (.cpp file)

Preprocessed C++ file
C++ Compiler

CSI33 Data Structures

C++4 History And Background

Comments, Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro Data Types And Variable Declarations

Include Statements, Namespaces, and Input/Ou

The Build Process

C+-+ TRANSLATION PROCESS - “BUILDING” A

PROGRAM

Ci++ Translation (Linking and Running)

‘ Object Code File ‘ ‘ Object Code File (.obj) ‘ ‘ Static—Linked Libraries ‘

‘ Executable Machine Code file (.exe) ‘

-
LI

CSI33 Data Structures

C++4 History And Background

Comments, Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro Data Types And Variable Declarations

Include Statements, Namespaces, and Input/Ou

The Build Process

C+-+ TRANSLATION PROCESS - “BUILDING” A

PROGRAM

C++ Translation (Execution)

‘ Executable Machine Code file (.exe) ‘ ‘ Dynamic-Linked Libraries ‘

—

Running program

-
LI

CSI33 Data Structures

C++ History And Background
Comments, Blocks Of Code, Identifiers and Key

Chapter 8: A C++ Introduction For Python Pro Data Ty s And Variable Decla ons
Include tements, Namespaces, and Input/Ou

The Build Process

COMMENTS

SINGLE-LINE OR MULTILINE

@ A single-line comment begins with //
@ A multiline comment begins with /* and ends with */

SE
B
CSI33 Data Structures

C++ History And Background

Comments, Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro Data Types And Variable Declarations

Include Statements, Namespaces, and Input/Ou

The Build Process

WHITESPACE AND BLOCKS OF CODE

WHITESPACE

o Whitespace consists of spaces, tabs, and newline characters.

o C++ uses whitespace as a separator between keywords,
identifiers, and operation symbols.

(]

There is no other special meaning for whitespace.

(]

Indentation is done for readability only—it is not used for the
body of a function, a loop, or an if/else clause.

SE
B
CSI33 Data Structures

C++ History And Background

Comments, Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro Data Types And Variable Declarations

Include Statements, Namespaces, and Input/Ou

The Build Process

Brocks Or CODE

FuncTiON BODIES

In C++, instead of indentation, function bodies and if clauses are
specified by enclosing them in curly brace symbols { and }. The
code inside a pair of braces is called a Code Block.

SE
B
CSI33 Data Structures

C++ History And Background
Comments, Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro And Variable Declarations
, Namespace

IDENTIFIERS AND KEYWORDS

Words which have special meaning for C++ cannot be used as
identifiers for variables, function names, or class names.

SE
B
CSI33 Data Structures

C++ History And Background

Comments, Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro Data Types And Variable Declarations

Include Statements, Namespaces, and Input/Ou

The Build Process

IDENTIFIERS AND KEYWORDS

An identifier can be any sequence of letters (uppercase or
lowercase), decimal digits (0-9) or the underscore character “_", as
long as the first character of the identifier is not a digit.

SE
B
CSI33 Data Structures

C++ History And Background

Comments, Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro Data Types And Variable Declarations

Include Statements, Namespaces, and Input/Ou

The Build Process

DATA TYPES

VARIABLES HOLD VALUES (NOT REFERENCES)

In Python, every variable name uses a reference (a four-byte
address), which can point to any type of data (int, str, or any
object). The type of a variable can be changed by an assignment
statement. Python is said to use dynamic typing.

SE
B
CSI33 Data Structures

C++ History And Background

Comments, Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro Data Types And Variable Declarations

Include Statements, Namespaces, and Input/Ou

The Build Process

DATA TYPES

IN C++4, DECLARATIONS ARE REQUIRED

In C++, every variable uses its actual value, so the compiler needs
to know the type of data a variable will take, since different types
occupy different amounts of memory. The compiler reserves as
many bytes of memory as required for each declared variable,
based on the data type specified in the declaration.

@ int = 4 bytes: the declaration int a; allocates 4 bytes for a
o char = 1 byte: the declaration char c; allocates 1 byte for c

o double = 8 bytes: the declaration double d; allocates 8
bytes for d

©

bool = 1 byte: the declaration bool b; allocates 1 byte for b iémﬁ

CSI33 Data Structures

C++ History And Background

Comme Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro at. A s And Variable Declarations

Include Statements, Namespaces, and Input/Ou

The Build Process

INCLUDE STATEMENTS

INCLUDE STATEMENTS IN C+-+ ARE LIKE IMPORT
STATEMENTS IN PYTHON

In C++, an include statement is used to copy the contents from
another file into the file being translated. This is useful, for
example, when the same variable is used in different C++ program
files since its declaration can be written once and then included
whenever that variable is used.

SE
B
CSI33 Data Structures

C++ History And Background

Comments, Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro Data Types And Variable Declarations

Include Statements, Namespaces, and Input/Ou

The Build Process

NAMESPACES

NAMESPACES ARE LIKE MODULES IN PYTHON

In Python, if a variable in one module has the same name as one in
another module, the two variables are kept separate by Python,
and can have different values.

In C++, declaring and naming a namespace (surrounded with
braces) will cause every variable declared in the namespace to exist
separately from any variable with the same name declared outside
the namespace.

SE
B
CSI33 Data Structures

C++ History And Background

Comments, Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro Data Types And Variable Declarations

Include Statements, Namespaces, and Input/Ou

The Build Process

INpUT/OUTPUT

cin is an object in the istream class. Using the >> operator, it
allows user input, from the keyboard, to become a variable's value:
cin >> a;

cout is an object in the ostream class. Using the << operator, it
allows a variable's values to become output on the display console:
cout << aj;

SE
B
CSI33 Data Structures

C++ History And Background

Comments, Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro Data Types And Variable Declarations

Include Statements, Namespaces, and Input/Ou

The Build Process

INpUT/OUTPUT

¢ ‘HELLO, WORLD’’

// hello.cpp

#include <iostream>

using namespace std;

int main()

{
cout << "hello world\n";
system("PAUSE") ;
return O;

SE
B
CSI33 Data Structures

C++ History And Background

Comments, Blocks Of Code, Identifiers and Key
Chapter 8: A C++ Introduction For Python Pro Data Types And Variable Declarations

Include Statements, Namespaces, and Input/Ou

The Build Process

BuiLD

@ A script (short program) which tells the computer to perform
the steps of building an executable file:

@ Preprocessing and compiling a . cpp file into an object(. o)
file.

o Linking the object file with other machine code files to
produce an executable (.exe) file.

@ Only perform operations if the output file is older than the
input file.

SE
B
CSI33 Data Structures

C++ History And Background
Comments, Blocks Of Code, Identifi
Chapter 8: A C++ Introduction For Python Pro Data Types And Variable Decla
Include Statements, Namespaces, and Input/Ou
The Build Process

BuiLD

EcLiPSE CONSOLE

***x* Build of configuration Debug for project HelloWorld ***x*
*xx% Internal Builder is used for build ***x

g++ -00 -g3 -Wall -c -fmessage-length=0 -ohello.o ..\hello.cpp
gt++ -oHelloWorld.exe hello.o

Build complete for project HelloWorld

Time consumed: 2266 ms. y

SE
B
CSI33 Data Structures

	Chapter 8: A C++ Introduction For Python Programmers
	C++ History And Background
	Comments, Blocks Of Code, Identifiers and Keywords
	Data Types And Variable Declarations
	Include Statements, Namespaces, and Input/Output
	The Build Process

