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HISTORY

EARLY LANGUAGES - ANCESTORS OF C+-+

e 1967 - BCPL (Martin Richards, Cambridge)
e 1969 - B (Thomson and Ritchie, AT&T)

@ 1969 - UNIX Operating System (Kernigan, Ritchie and
Thomson, AT&T)

@ 1970 - C Language (Kernigan and Ritchie, AT&T)
@ 1980 - C with Classes (Bjarne Stroustrup, AT&T)

e 1985 - C++ (Borland, Microsoft, IBM and AT&T)
@ 1990 - Standard Template Library (STL)

o 1998 - ANSI standards established for C4++ ﬁlm
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PYTHON TRANSLATION PROCESS

ION

Python Translation

‘ Python Source (.py file) ‘

Python Interpreter

‘ Libraries ‘ ‘ Python Byte Code (.pyc file) ‘ ‘ Imported Python Bytecode

Python Interpreter

Translates and executes

one bytecode instruction

at a time ﬁﬁ
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C+-+ TRANSLATION PROCESS - “BUILDING” A

PROGRAM

C++ Translation (Compilation)

C++ Source (.cpp file)

Preprocessed C++ file
C++ Compiler
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C+-+ TRANSLATION PROCESS - “BUILDING” A

PROGRAM

Ci++ Translation (Linking and Running)

‘ Object Code File ‘ ‘ Object Code File (.obj) ‘ ‘ Static—Linked Libraries ‘

‘ Executable Machine Code file (.exe) ‘
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C+-+ TRANSLATION PROCESS - “BUILDING” A

PROGRAM

C++ Translation (Execution)

‘ Executable Machine Code file (.exe) ‘ ‘ Dynamic-Linked Libraries ‘

—

Running program
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COMMENTS

SINGLE-LINE OR MULTILINE

@ A single-line comment begins with //
@ A multiline comment begins with /* and ends with */
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WHITESPACE AND BLOCKS OF CODE

WHITESPACE

o Whitespace consists of spaces, tabs, and newline characters.

o C++ uses whitespace as a separator between keywords,
identifiers, and operation symbols.

(]

There is no other special meaning for whitespace.

(]

Indentation is done for readability only—it is not used for the
body of a function, a loop, or an if/else clause.
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Brocks Or CODE

FuncTiON BODIES

In C++, instead of indentation, function bodies and if clauses are
specified by enclosing them in curly brace symbols { and }. The
code inside a pair of braces is called a Code Block.
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IDENTIFIERS AND KEYWORDS

Words which have special meaning for C++ cannot be used as
identifiers for variables, function names, or class names.
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IDENTIFIERS AND KEYWORDS

An identifier can be any sequence of letters (uppercase or
lowercase), decimal digits (0-9) or the underscore character “_", as
long as the first character of the identifier is not a digit.
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DATA TYPES

VARIABLES HOLD VALUES (NOT REFERENCES)

In Python, every variable name uses a reference ( a four-byte
address), which can point to any type of data (int, str, or any
object). The type of a variable can be changed by an assignment
statement. Python is said to use dynamic typing.
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DATA TYPES

IN C++4, DECLARATIONS ARE REQUIRED

In C++, every variable uses its actual value, so the compiler needs
to know the type of data a variable will take, since different types
occupy different amounts of memory. The compiler reserves as
many bytes of memory as required for each declared variable,
based on the data type specified in the declaration.

@ int = 4 bytes: the declaration int a; allocates 4 bytes for a
o char = 1 byte: the declaration char c; allocates 1 byte for c

o double = 8 bytes: the declaration double d; allocates 8
bytes for d

©

bool = 1 byte: the declaration bool b; allocates 1 byte for b iémﬁ
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INCLUDE STATEMENTS

INCLUDE STATEMENTS IN C+-+ ARE LIKE IMPORT
STATEMENTS IN PYTHON

In C++, an include statement is used to copy the contents from
another file into the file being translated. This is useful, for
example, when the same variable is used in different C++ program
files since its declaration can be written once and then included
whenever that variable is used.
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NAMESPACES

NAMESPACES ARE LIKE MODULES IN PYTHON

In Python, if a variable in one module has the same name as one in
another module, the two variables are kept separate by Python,
and can have different values.

In C++, declaring and naming a namespace (surrounded with
braces) will cause every variable declared in the namespace to exist
separately from any variable with the same name declared outside
the namespace.
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INpUT/OUTPUT

cin is an object in the istream class. Using the >> operator, it
allows user input, from the keyboard, to become a variable's value:
cin >> a;

cout is an object in the ostream class. Using the << operator, it
allows a variable's values to become output on the display console:
cout << aj;
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INpUT/OUTPUT

¢ ‘HELLO, WORLD’’

// hello.cpp

#include <iostream>

using namespace std;

int main()

{
cout << "hello world\n";
system("PAUSE") ;
return O;
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BuiLD

@ A script (short program) which tells the computer to perform
the steps of building an executable file:

@ Preprocessing and compiling a . cpp file into an object(. o)
file.

o Linking the object file with other machine code files to
produce an executable (.exe) file.

@ Only perform operations if the output file is older than the
input file.
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BuiLD

EcLiPSE CONSOLE

***x* Build of configuration Debug for project HelloWorld ***x*
*xx% Internal Builder is used for build ***x

g++ -00 -g3 -Wall -c -fmessage-length=0 -ohello.o ..\hello.cpp
gt++ -oHelloWorld.exe hello.o

Build complete for project HelloWorld

Time consumed: 2266 ms. y
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