Outline

## CSI33 DATA STRUCTURES

Department of Mathematics and Computer Science Bronx Community College

October 11, 2017



CSI33 Data Structures

## OUTLINE

## ① CHAPTER 6: RECURSION

- Analyzing Recursion
- Sorting



## OUTLINE

## ① CHAPTER 6: RECURSION

- Analyzing Recursion
- Sorting



Analyzing Recursion Sorting

# MEASURING COMPLEXITY (RUNNING TIME) OF RECURSIVE ALGORITHMS

## Comparison With Iterative (Looping) Algorithms

- Any iterative algorithm can be transformed into a recursive one.
- Different strategies lead to different running times. (The recursive power example is more efficient than the naive loop version.)
- To measure efficiency, you must count recursive calls and the depth of the call stack.
- You must also consider the size of the data parameters that are passed in recursive calls.



### The Fibonacci Sequence

The Fibonacci Sequence is obtained by beginning with the pair of numbers 1, 1 and continuing indefinitely by adding the last two numbers to give the next number in the sequence, giving 1, 1, 2, 3, 5, 8, 13 and so on.



#### The NTH FIBONACCI NUMBER: LOOP VERSION

```
def loopFib(n):
    curr = 1
    prev = 1
    for i in range(n - 2):
        curr, prev = curr + prev, curr
    return curr
```



Analyzing Recursion Sorting

## THE FIBONACCI SEQUENCE

#### The NTH FIBONACCI NUMBER: RECURSIVE VERSION

```
def recFib(n):
    if n < 3:
        return 1
    else:
        return recFib(n - 1) + recFib(n - 2)</pre>
```



Analyzing Recursion Sorting

## The Fibonacci Sequence



イロトイクトイミトイミト そうくで CSI33 Data Structures

#### ANALYSIS

To calculate fib(6) is very wasteful:

- fib(4) is calculated 2 times
- fib(3) is calculated 3 times
- fib(2) is calculated 5 times
- fib(1) is calculated 8 times
   To calculate fib(n) requires fib(n) 1 steps, so the running time is Θ(fib(n)), which is Θ(2<sup>n</sup>)), or exponential in n.



# The nth Fibonacci Number: Improved Recursive Version

```
def newFib(n):
    return newFib2(1, 1, 0, n)
def newFib2(curr, prev, i, n):
    if i == n - 2:
        return curr
    else:
        return newFib2(curr + prev,curr, i + 1, n)
```



Analyzing Recursion Sorting

## THE FIBONACCI SEQUENCE

#### ANALYSIS

To calculate fib(n) now requires n-2 recursive calls, so the running time is  $\Theta(n)$ , which is big improvement.



CSI33 Data Structures

#### How To Make An Iterative Function Recursive

- Write a function that calls a helper function with parameters for all local variables and parameters from the loop version.
- Pass the initial values from the loop version in this function call.
- The helper function will be recursive:
- The base case will be the negation of the loop condition.
- The recursive call will change the parameters to match one iteration of the loop version.



## SELECTION SORT

#### SELECTION SORT

```
def SelectionSort(lst):
    n = len(lst)
    for i in range(n-1):
        pos = i
        for j in range(i+1, n):
            if lst[j] < lst[pos]:
                pos = j
        lst[i], lst[pos] = lst[pos], lst[i]
```



## SELECTION SORT

#### Selection Sort Analysis

- Inner loop runs *n* times
- First time it compares n items, then n 1, etc.
- Total comparisons  $= n + (n 1) + (n 2) + ... + 1 = \frac{n(n+1)}{2}$
- Running time is  $\Theta(n^2)$



Analyzing Recursion Sorting

## **Recursive Design: Mergesort**

#### Mergesort Pseudocode

Algorithm: mergeSort nums
 split nums into two halves (nums1, nums2)
 sort nums1 (the first half)
 sort nums2 (the second half)
 merge nums1 and nums2 back into nums



Analyzing Recursion Sorting

## **Recursive Design: Mergesort**

#### Merge Pseudocode

Algorithm: merge sorted lists (nums1 and nums2) into
nums:
 while both nums1 and nums2 have more items:
 if top of nums1 is smaller:
 copy it into current spot in nums
 else (top of nums2 is smaller):
 copy it into current spot in nums
 copy it into current spot in nums
 copy remaining items from nums1 or nums2 to nums



Analyzing Recursion Sorting

## **Recursive Design: Mergesort**

#### RECURSIVE MERGESORT

if len(nums) > 1:
 split nums into two halves (nums1, nums2)
 mergeSort nums1 (the first half)
 mergeSort nums2 (the second half)
 merge nums1 and nums2 back into nums



## Analyzing Mergesort

#### RUNNING TIME OF MERGE

- Each item gets moved exactly once back into nums
- Running time is  $\Theta(n)$ , where *n* is the size of nums

#### RUNNING TIME OF MERGESORT

- The call stack gets as deep as log<sub>2</sub>(n), where n is the size of nums
- At each stage, mergeSort is called twice, but for each call, the argument list is half the size as before.
- For log<sub>2</sub>(*n*) stages, each of the *n* items is moved once per stage.
- The running time is the product, which is  $\Theta(n \log n)$



<ロ> <同> <同> < 同> < 同>

#### Analyzing Recursion Sorting

## Analyzing Mergesort

#### RUNNING TIME OF MERGESORT





#### CSI33 Data Structures