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Measuring Complexity (Running Time) Of
Recursive Algorithms

Comparison With Iterative (Looping) Algorithms

Any iterative algorithm can be transformed into a recursive
one.

Different strategies lead to different running times. (The
recursive power example is more efficient than the naive loop
version.)

To measure efficiency, you must count recursive calls and the
depth of the call stack.

You must also consider the size of the data parameters that
are passed in recursive calls.
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The Fibonacci Sequence

The Fibonacci Sequence

The Fibonacci Sequence is obtained by beginning with the pair of
numbers 1, 1 and continuing indefinitely by adding the last two
numbers to give the next number in the sequence, giving 1, 1, 2, 3,
5, 8, 13 and so on.
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The Fibonacci Sequence

The nth Fibonacci Number: Loop Version

def loopFib(n):

curr = 1

prev = 1

for i in range(n - 2):

curr, prev = curr + prev, curr

return curr
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The Fibonacci Sequence

The nth Fibonacci Number: Recursive Version

def recFib(n):

if n < 3:

return 1

else:

return recFib(n - 1) + recFib(n - 2)
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The Fibonacci Sequence

Analysis
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The Fibonacci Sequence

Analysis

To calculate fib(6) is very wasteful:

fib(4) is calculated 2 times

fib(3) is calculated 3 times

fib(2) is calculated 5 times

fib(1) is calculated 8 times
To calculate fib(n) requires fib(n) − 1 steps, so the running
time is Θ(fib(n)), which is Θ(2n)), or exponential in n.
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The Fibonacci Sequence

The nth Fibonacci Number: Improved Recursive
Version

def newFib(n):

return newFib2(1, 1, 0, n)

def newFib2(curr, prev, i, n):

if i == n - 2:

return curr

else:

return newFib2(curr + prev,curr, i + 1, n)
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The Fibonacci Sequence

Analysis

To calculate fib(n) now requires n − 2 recursive calls, so the
running time is Θ(n), which is big improvement.
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The Fibonacci Sequence

How To Make An Iterative Function Recursive

Write a function that calls a helper function with parameters
for all local variables and parameters from the loop version.

Pass the initial values from the loop version in this function
call.

The helper function will be recursive:

The base case will be the negation of the loop condition.

The recursive call will change the parameters to match one
iteration of the loop version.
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Selection Sort

Selection Sort

def SelectionSort(lst):

n = len(lst)

for i in range(n-1):

pos = i

for j in range(i+1, n):

if lst[j] < lst[pos]:

pos = j

lst[i], lst[pos] = lst[pos], lst[i]
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Selection Sort

Selection Sort Analysis

Inner loop runs n times

First time it compares n items, then n − 1, etc.

Total comparisons = n + (n − 1) + (n − 2) + . . . + 1 = n(n+1)
2

Running time is Θ(n2)
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Recursive Design: Mergesort

Mergesort Pseudocode

Algorithm: mergeSort nums

split nums into two halves (nums1, nums2)

sort nums1 (the first half)

sort nums2 (the second half)

merge nums1 and nums2 back into nums
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Recursive Design: Mergesort

Merge Pseudocode

Algorithm: merge sorted lists (nums1 and nums2) into

nums:

while both nums1 and nums2 have more items:

if top of nums1 is smaller:

copy it into current spot in nums

else (top of nums2 is smaller):

copy it into current spot in nums

copy remaining items from nums1 or nums2 to nums
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Recursive Design: Mergesort

Recursive mergeSort

if len(nums) > 1:

split nums into two halves (nums1, nums2)

mergeSort nums1 (the first half)

mergeSort nums2 (the second half)

merge nums1 and nums2 back into nums
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Analyzing Mergesort

Running Time of merge

Each item gets moved exactly once back into nums

Running time is Θ(n), where n is the size of nums

Running Time of mergeSort

The call stack gets as deep as log2(n), where n is the size of
nums

At each stage, mergeSort is called twice, but for each call,
the argument list is half the size as before.

For log2(n) stages, each of the n items is moved once per
stage.

The running time is the product, which is Θ(n log n)
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Analyzing Mergesort

Running Time of mergeSort
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