
Outline

CSI33 Data Structures

Department of Mathematics and Computer Science
Bronx Community College

October 11, 2017

CSI33 Data Structures



Outline

Outline

1 Chapter 6: Recursion
Analyzing Recursion
Sorting

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

Outline

1 Chapter 6: Recursion
Analyzing Recursion
Sorting

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

Measuring Complexity (Running Time) Of
Recursive Algorithms

Comparison With Iterative (Looping) Algorithms

Any iterative algorithm can be transformed into a recursive
one.

Different strategies lead to different running times. (The
recursive power example is more efficient than the naive loop
version.)

To measure efficiency, you must count recursive calls and the
depth of the call stack.

You must also consider the size of the data parameters that
are passed in recursive calls.

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

The Fibonacci Sequence

The Fibonacci Sequence

The Fibonacci Sequence is obtained by beginning with the pair of
numbers 1, 1 and continuing indefinitely by adding the last two
numbers to give the next number in the sequence, giving 1, 1, 2, 3,
5, 8, 13 and so on.

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

The Fibonacci Sequence

The nth Fibonacci Number: Loop Version

def loopFib(n):

curr = 1

prev = 1

for i in range(n - 2):

curr, prev = curr + prev, curr

return curr

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

The Fibonacci Sequence

The nth Fibonacci Number: Recursive Version

def recFib(n):

if n < 3:

return 1

else:

return recFib(n - 1) + recFib(n - 2)

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

The Fibonacci Sequence

Analysis

fib(1)

fib(1)

fib(1)

fib(6)

fib(2)fib(3)

fib(4)

fib(1)fib(2)

fib(5)

fib(3)

fib(1)fib(2)fib(2)fib(3)

fib(1)fib(1)fib(1)fib(2)

fib(4)

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

The Fibonacci Sequence

Analysis

To calculate fib(6) is very wasteful:

fib(4) is calculated 2 times

fib(3) is calculated 3 times

fib(2) is calculated 5 times

fib(1) is calculated 8 times
To calculate fib(n) requires fib(n) − 1 steps, so the running
time is Θ(fib(n)), which is Θ(2n)), or exponential in n.

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

The Fibonacci Sequence

The nth Fibonacci Number: Improved Recursive
Version

def newFib(n):

return newFib2(1, 1, 0, n)

def newFib2(curr, prev, i, n):

if i == n - 2:

return curr

else:

return newFib2(curr + prev,curr, i + 1, n)

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

The Fibonacci Sequence

Analysis

To calculate fib(n) now requires n − 2 recursive calls, so the
running time is Θ(n), which is big improvement.

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

The Fibonacci Sequence

How To Make An Iterative Function Recursive

Write a function that calls a helper function with parameters
for all local variables and parameters from the loop version.

Pass the initial values from the loop version in this function
call.

The helper function will be recursive:

The base case will be the negation of the loop condition.

The recursive call will change the parameters to match one
iteration of the loop version.

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

Selection Sort

Selection Sort

def SelectionSort(lst):

n = len(lst)

for i in range(n-1):

pos = i

for j in range(i+1, n):

if lst[j] < lst[pos]:

pos = j

lst[i], lst[pos] = lst[pos], lst[i]

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

Selection Sort

Selection Sort Analysis

Inner loop runs n times

First time it compares n items, then n − 1, etc.

Total comparisons = n + (n − 1) + (n − 2) + . . . + 1 = n(n+1)
2

Running time is Θ(n2)

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

Recursive Design: Mergesort

Mergesort Pseudocode

Algorithm: mergeSort nums

split nums into two halves (nums1, nums2)

sort nums1 (the first half)

sort nums2 (the second half)

merge nums1 and nums2 back into nums

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

Recursive Design: Mergesort

Merge Pseudocode

Algorithm: merge sorted lists (nums1 and nums2) into

nums:

while both nums1 and nums2 have more items:

if top of nums1 is smaller:

copy it into current spot in nums

else (top of nums2 is smaller):

copy it into current spot in nums

copy remaining items from nums1 or nums2 to nums

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

Recursive Design: Mergesort

Recursive mergeSort

if len(nums) > 1:

split nums into two halves (nums1, nums2)

mergeSort nums1 (the first half)

mergeSort nums2 (the second half)

merge nums1 and nums2 back into nums

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

Analyzing Mergesort

Running Time of merge

Each item gets moved exactly once back into nums

Running time is Θ(n), where n is the size of nums

Running Time of mergeSort

The call stack gets as deep as log2(n), where n is the size of
nums

At each stage, mergeSort is called twice, but for each call,
the argument list is half the size as before.

For log2(n) stages, each of the n items is moved once per
stage.

The running time is the product, which is Θ(n log n)

CSI33 Data Structures



Chapter 6: Recursion
Analyzing Recursion
Sorting

Analyzing Mergesort

Running Time of mergeSort

5

2

1

8

4

6

7

3

5

2

7

3

7

3

4

6

2

8

1

6

4

7

6

4

3

8

5

2

1

1

8

1

8

2

5

7

3

4

6

4

3

2

1

8

7

6

5

Split

Split

Merge

MergeSplit

Merge

n Items

log (n) Stages

MergeSort

MergeSort

5

2

8

1

6

4

3

7

5

MergeSort

CSI33 Data Structures


	Chapter 6: Recursion
	Analyzing Recursion
	Sorting


