
Outline

CSI33 Data Structures

Department of Mathematics and Computer Science
Bronx Community College

October 4, 2017

CSI33 Data Structures

Outline

Outline

1 Chapter 6: Recursion
Recursive Definitions
Simple Recursive Examples

CSI33 Data Structures

Chapter 6: Recursion
Recursive Definitions
Simple Recursive Examples

Outline

1 Chapter 6: Recursion
Recursive Definitions
Simple Recursive Examples

CSI33 Data Structures

Chapter 6: Recursion
Recursive Definitions
Simple Recursive Examples

Recursive Definitions

A Function Can Call Itself

A recursive definition of a function is one which makes a
function call to the function being defined.

The function call is then a recursive function call.

A definition is circular if it leads to an infinite sequence of
function calls.

To prevent this, the function must call itself with a parameter
smaller than the one it is using.
The function must test for when the parameter has reached
the minimum size (the base case): this must be handled
without a recursive call.

CSI33 Data Structures

Chapter 6: Recursion
Recursive Definitions
Simple Recursive Examples

Recursive Definitions

The Call Stack

The function call stack can handle recursive functions easily. There
is no reason why a function can’t push an activation record onto
the call stack with variables for the current function while calling
that same function. The earlier version of that function will resume
when the recursive call is completed. When the base case is finally
met, there will be no further recursive calls, and no further
activation records will be pushed onto the stack. (Without a base
case, the stack would overflow, producing a run-time error.)

CSI33 Data Structures

Chapter 6: Recursion
Recursive Definitions
Simple Recursive Examples

Recursive Definitions

The Factorial Function

def fact(n):

if n == 0:

return 1

else:

return n * fact(n - 1)

CSI33 Data Structures

Chapter 6: Recursion
Recursive Definitions
Simple Recursive Examples

String Reversal

Circular Definition

def reverse(s):

return reverse(s[1:]) + s[0]

CSI33 Data Structures

Chapter 6: Recursion
Recursive Definitions
Simple Recursive Examples

String Reversal

Definition with Base Case

def reverse(s):

if s == "":

return s

else:

return reverse(s[1:]) + s[0]

CSI33 Data Structures

Chapter 6: Recursion
Recursive Definitions
Simple Recursive Examples

Anagrams

Anagrams

An anagram of a word is another word spelled using the same
letters but rearranged. Rearrangements are also called
permutations. For example: TORSO is an anagram for ROOST.
A recursive strategy to produce all anagrams of a given word is:

remove the first letter from the word.

for all anagrams of the smaller word, insert it in all possible
positions.

CSI33 Data Structures

Chapter 6: Recursion
Recursive Definitions
Simple Recursive Examples

Anagrams

Anagrams Using Recursion

def anagrams(s):

if s == "":

return [s]

else:

ans = []

for w in anagrams(s[1:]):

for pos in range(len(w)+1):

ans.append(w[:pos]+s[0]+w[pos:1])

return ans

CSI33 Data Structures

Chapter 6: Recursion
Recursive Definitions
Simple Recursive Examples

Fast Exponentiation

Naive Iteration is Θ(n)

power.py

def loopPower(a, n):

ans = 1

for i in range(n):

ans = ans * a

return ans

CSI33 Data Structures

Chapter 6: Recursion
Recursive Definitions
Simple Recursive Examples

Fast Exponentiation

Divide and Conquer Recursion is Θ(log n)

power.py

def recPower(a, n):

if n == 0:

return 1

else:

factor = recPower(a, n // 2)

if n % 2 == 0:

return factor * factor

else:

return factor * factor * a

CSI33 Data Structures

Chapter 6: Recursion
Recursive Definitions
Simple Recursive Examples

Binary Search

Iteration

def search(items, target):

low = 0

high = len(items) - 1

while low <= high:

mid = (low + high) // 2

item = nums[mid]

if target == item:

return mid

elif target < item:

high = mid - 1

else:

low = mid + 1

return -1
CSI33 Data Structures

Chapter 6: Recursion
Recursive Definitions
Simple Recursive Examples

Binary Search

Pseudocode Using Recursion

Algorithm: binary search

-- search for x in nums[low]...nums[high]

if low > high

x is not in nums

mid = (low + high) // 2

if x== nums[mid]:

x is at mid position

elif x < nums[mid]

binary search for x in nums[low]...nums[mid-1]

else

binary search for x in nums[mid+1]...nums[high]

CSI33 Data Structures

Chapter 6: Recursion
Recursive Definitions
Simple Recursive Examples

Binary Search

Python Code Using Recursion

def search(items, target):

return recBinSearch(target, items, 0, len(items)-1)

def recBinSearch(x, nums, low, high):

if low > high:

return -1

mid = (low + high) // 2

item = nums[mid]

if x == item:

return mid

elsif x < item:

return recBinSearch(x, nums, low, mid-1)

else:

return recBinSearch(x, nums, mid+1, high)

CSI33 Data Structures

	Chapter 6: Recursion
	Recursive Definitions
	Simple Recursive Examples

