
Outline

CSI33 Data Structures

Department of Mathematics and Computer Science
Bronx Community College

October 2, 2017

CSI33 Data Structures

Outline

Outline

1 Chapter 5: Stacks and Queues
Queues

CSI33 Data Structures

Chapter 5: Stacks and Queues Queues

Outline

1 Chapter 5: Stacks and Queues
Queues

CSI33 Data Structures

Chapter 5: Stacks and Queues Queues

A Queue ADT

A Container Class for First-In-First-Out Access

A queue is a list-like container with access restricted to both ends
of the list. Items are added at the (the back of the queue) and
removed from the front. In real life: “waiting in line” or “taking a
number”.

The enqueue method puts an item at the back of the queue.

The dequeue method returns the item at the front, and
removes it from the queue. (precondition: queue is not
empty—size > 0)

The front method returns that item (precondition: queue is
not empty—size > 0)

The size method returns the number of items in the queue.

CSI33 Data Structures

Chapter 5: Stacks and Queues Queues

Simple Queue Application: A Palindrome
Recognizer

A Palindrome Recognizer

def isPalindrome(phrase):

forward = Queue()

reverse = Stack()

extractLetters(phrase, forward, reverse)

return sameSequence(forward, reverse)

CSI33 Data Structures

Chapter 5: Stacks and Queues Queues

Simple Queue Application: A Palindrome
Recognizer

Phase I: Extract Letters

def extractLetters(phrase, q, s):

for ch in phrase:

if ch.isalpha():

ch = ch.lower()

q.enqueue(ch)

s.push(ch)

CSI33 Data Structures

Chapter 5: Stacks and Queues Queues

Simple Queue Application: A Palindrome
Recognizer

Phase II: Same Sequence

def sameSequence(q, s):

while q.size() > 0:

ch1 = q.dequeue()

ch2 = s.pop()

if ch1 != ch2:

return False

return True

CSI33 Data Structures

Chapter 5: Stacks and Queues Queues

Queue Implementions

A Python List Is Not An Efficient Queue

Both ends of the list must be used. The first item is either

the front, and dequeue is Θ(n)–every item must be moved
down to delete the first item, or

the back, and enqueue is Θ(n)–every item must be moved up
to insert the first item.

CSI33 Data Structures

Chapter 5: Stacks and Queues Queues

Queue Implementions

Linked List

This is the most flexible representation of a Queue ADT. By using
a reference to the first node (front) and last node (back), a
singly-linked list can perform enqueue and dequeue in constant
time (Θ(1)).
However, the links take up extra memory space.

CSI33 Data Structures

Chapter 5: Stacks and Queues Queues

Queue Implementions

Circular Array

A circular array avoids both the space inefficiency of links and the
time inefficiency of the Python list (array) representation by not
moving items. Instead, the front and back of the queue move,
using changing indexes as markers.

To enqueue a new item into the queue, the index marking the
back of the queue is increased by one. The item that was in
the back stays in the same position, but the new item goes
behind it, into the new “back” position.

Similarly, when an item is dequeued, the front of the queue is
moved to the next item behind it.

The array is “circular” because when either marker goes past
the end of the array, it is put back at index zero.

CSI33 Data Structures

Chapter 5: Stacks and Queues Queues

Simulation of Retail Store with One
Checkout Register

A Typical Queuing Simulation

To measure efficiency of service delivery, one runs a program that
simulates these events:

Random arrival times (customers finish shopping)

Waiting for service (grocery checkout register)

Random time to be serviced (number of items)

CSI33 Data Structures

Chapter 5: Stacks and Queues Queues

Simulation of Retail Store with One
Checkout Register

def genTestData(filename, totalTicks, maxItems, arrivalInterval):

outfile = open(filename, "w")

step through the ticks

for t in range(1,totalTicks):

if random() < 1./arrivalInterval:

a customer arrives this tick

with a random number of items

items = randrange(1, maxItems+1)

outfile.write("%d %d\n" % (t, items))

outfile.close()

CSI33 Data Structures

Chapter 5: Stacks and Queues Queues

Simulation of Retail Store with One
Checkout Register

class Customer(object):

def init (self, arrivalTime, itemCount):

self.arrivalTime = int(arrivalTime)

self.itemCount = int(itemCount)

def repr (self):

return ("Customer(arrivalTime=%d, itemCount=%d)" %

(self.arrivalTime, self.itemCount))

CSI33 Data Structures

Chapter 5: Stacks and Queues Queues

Simulation of Retail Store with One
Checkout Register

def createArrivalQueue(fname):

q = Queue()

infile = open(fname)

for line in infile:

time, items = line.split()

q.enqueue(Customer(time,items))

infile.close()

return q

CSI33 Data Structures

Chapter 5: Stacks and Queues Queues

Simulation of Retail Store with One
Checkout Register

class CheckerSim(object):

def init (self, arrivalQueue, avgTime):

self.time = 0

self.arrivals = arrivalQueue

self.line = Queue()

self.serviceTime = 0

self.totalWait = 0

self.maxWait = 0

self.customerCount = 0

self.maxLength = 0

self.ticksPerItem = avgTime

CSI33 Data Structures

Chapter 5: Stacks and Queues Queues

Simulation of Retail Store with One
Checkout Register

def run(self):

while (self.arrivals.size() > 0 or

self.line.size() > 0 or

self.serviceTime > 0):

self.clockTick()

def averageWait(self):

float(self.totalWait) / self.customerCount

def maximumWait(self):

return self.maxWait

def maximumLineLength(self):

return self.maxLength

CSI33 Data Structures

Chapter 5: Stacks and Queues Queues

Simulation of Retail Store with One
Checkout Register

def clockTick(self):

self.time += 1

while (self.arrivals.size() > 0 and

self.arrivals.front().arrivalTime == self.time):

self.line.enqueue(self.arrivals.dequeue())

self.customerCount += 1

self.maxLength = max(self.maxLength, self.line.size())

if self.serviceTime > 0:

self.serviceTime -= 1

elif self.line.size() > 0:

customer = self.line.dequeue()

self.serviceTime = customer.itemCount * self.ticksPerItem

waitTime = self.time - customer.arrivalTime

self.totalWait += waitTime

self.maxWait = max(self.maxWait, waitTime)

CSI33 Data Structures

	Chapter 5: Stacks and Queues
	Queues

