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Chapter 5: Stacks and Queues Stacks

The Stack ADT

A Container Class for Last-In-First-Out Access

A stack is a list-like container with access restricted to one end of
the list (the top of the stack). You can

push an item onto the stack

pop an item off the stack (precondition: stack is not
empty—size > 0)

Inspect the top position (precondition: stack is not
empty—size > 0)

Obtain the current size of the stack.
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Simple Stack Applications

Balanced Parentheses

def parensBalance2(s):

stack = Stack()

for ch in s:

if ch in "([{": " push an opening marker "

stack.push(ch)

elif ch in ")]}": " match closing "

if stack.size() < 1: " no pending open "

return False

else:

opener = stack.pop()

if opener+ch not in ["()", "[]", "{}"]:
return False " not a matching pair"

return stack.size() == 0 " everything matched?"

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4
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Implementing Stacks

A Python List As Concrete Representation

In Python the natural implementation of a stack is with a list.
class Stack(object):

def init (self):

self.items = []

def push(self, item):

self.items.append(item)

def pop(self):

return self.items.pop()

def top(self):

return self.items[-1]

def size(self):

return len(self.items)
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An Application: Expression Manipulation

Notation For Operations

infix: (2 + 3) * 4

prefix: * + 2 3 4

postfix: 2 3 + 4 *
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An Application: Expression Manipulation

Evaluating A Postfix Expression

3 4 5 + * 2 - 3 6 * +
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Chapter 5: Stacks and Queues Stacks

The Call Stack

Function Calls Can Be Nested

function A calls function B

function B returns

function A continues
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The Call Stack

Activation Records

Function A is running, and calls function B.

The local variables of function A, their current values, and
where function B should return to are put into an activation
record.

The activation record is pushed onto the call stack which has
been allocated for the program that is running.

When function B returns, this record is popped off the call
stack and used to continue running the program.
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The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack
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def A(x, y):

1: x2 = B(x)
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