
Outline

CSI33 Data Structures

Department of Mathematics and Computer Science
Bronx Community College

September 27, 2017

CSI33 Data Structures



Outline

Outline

1 Chapter 5: Stacks and Queues
Stacks

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Outline

1 Chapter 5: Stacks and Queues
Stacks

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Stack ADT

A Container Class for Last-In-First-Out Access

A stack is a list-like container with access restricted to one end of
the list (the top of the stack). You can

push an item onto the stack

pop an item off the stack (precondition: stack is not
empty—size > 0)

Inspect the top position (precondition: stack is not
empty—size > 0)

Obtain the current size of the stack.

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

def parensBalance2(s):

stack = Stack()

for ch in s:

if ch in "([{": " push an opening marker "

stack.push(ch)

elif ch in ")]}": " match closing "

if stack.size() < 1: " no pending open "

return False

else:

opener = stack.pop()

if opener+ch not in ["()", "[]", "{}"]:
return False " not a matching pair"

return stack.size() == 0 " everything matched?"

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

{

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

{

[

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

{

[

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

{

[

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

[

{

(

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

[

{

(

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

[

{

(

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

[

{

(

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

[

{

(

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

{

[

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

{

[

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

{

[

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

{

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

{

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

{

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Simple Stack Applications

Balanced Parentheses

{[2 * (7 - 4) + 2] + 3} * 4

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

Implementing Stacks

A Python List As Concrete Representation

In Python the natural implementation of a stack is with a list.
class Stack(object):

def init (self):

self.items = []

def push(self, item):

self.items.append(item)

def pop(self):

return self.items.pop()

def top(self):

return self.items[-1]

def size(self):

return len(self.items)

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

An Application: Expression Manipulation

Notation For Operations

infix: (2 + 3) * 4

prefix: * + 2 3 4

postfix: 2 3 + 4 *

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

An Application: Expression Manipulation

Evaluating A Postfix Expression

3 4 5 + * 2 - 3 6 * +

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

An Application: Expression Manipulation

Evaluating A Postfix Expression

3 4 5 + * 2 - 3 6 * +

3

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

An Application: Expression Manipulation

Evaluating A Postfix Expression

3 4 5 + * 2 - 3 6 * +

3

4

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

An Application: Expression Manipulation

Evaluating A Postfix Expression

3 4 5 + * 2 - 3 6 * +

3

4

5

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

An Application: Expression Manipulation

Evaluating A Postfix Expression

3 4 5 + * 2 - 3 6 * +

3

9

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

An Application: Expression Manipulation

Evaluating A Postfix Expression

3 4 5 + * 2 - 3 6 * +

27

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

An Application: Expression Manipulation

Evaluating A Postfix Expression

3 4 5 + * 2 - 3 6 * +

27

2

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

An Application: Expression Manipulation

Evaluating A Postfix Expression

3 4 5 + * 2 - 3 6 * +

25

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

An Application: Expression Manipulation

Evaluating A Postfix Expression

3 4 5 + * 2 - 3 6 * +

25

3

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

An Application: Expression Manipulation

Evaluating A Postfix Expression

3 4 5 + * 2 - 3 6 * +

25

3

6

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

An Application: Expression Manipulation

Evaluating A Postfix Expression

3 4 5 + * 2 - 3 6 * +

25

18

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

An Application: Expression Manipulation

Evaluating A Postfix Expression

3 4 5 + * 2 - 3 6 * +

43

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Function Calls Can Be Nested

function A calls function B

function B returns

function A continues

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Activation Records

Function A is running, and calls function B.

The local variables of function A, their current values, and
where function B should return to are put into an activation
record.

The activation record is pushed onto the call stack which has
been allocated for the program that is running.

When function B returns, this record is popped off the call
stack and used to continue running the program.

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

a = 3
CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

a = 3, b = 4
CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

a=3,b=4 main 10:

x = 3, y = 4
CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 2:x=3,y=4

n = 3
CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 2:x=3,y=4

n = 3, n2 = 9
CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 2:x=3,y=4

n = 3, n2 = 9
CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

a=3,b=4 main 10:

x = 3, y = 4, x2 = 9
CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 3:

x=3,y=4

x2=9

n = 4
CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 3:

x=3,y=4

x2=9

n = 4, n2 = 16
CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

a=3,b=4 main 10:

A 3:

x=3,y=4

x2=9

n = 4, n2 = 16
CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

a=3,b=4 main 10:

x=3,y=4,x2=9,y2=16
CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

a=3,b=4 main 10:

x=3,y=4,x2=9,y2=16,z=25
CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

a=3,b=4 main 10:

x=3,y=4,x2=9,y2=16,z=25
CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

a = 3, b = 4, c = 25
CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

a = 3, b = 4, c = 25
CSI33 Data Structures



Chapter 5: Stacks and Queues Stacks

The Call Stack

Example

def A(x, y):

1: x2 = B(x)

2: y2 = B(y)

3: z = x2 + y2

4: return z

def B(n): ’squares n ’

5: n2 = n * n

6: return n2

def main():

7: a = 3

8: b = 4

9: c = A(a, b)

10: print(c)

11: return

returnlocals

Call Stack

a = 3, b = 4, c = 25
CSI33 Data Structures


	Chapter 5: Stacks and Queues
	Stacks


