
Outline

CSI33 Data Structures

Department of Mathematics and Computer Science
Bronx Community College

September 25, 2017

CSI33 Data Structures



Outline

Outline

1 Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Outline

1 Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Using the ListNode Class

Using the ListNode Class

The class LList, an Abstract Data Type which will provide the
necessary interface operations for its objects to behave like lists
will be ListNode’s Only “customer”.
Since no other class will use ListNode objects, we don’t provide
public accessors or mutators (get item, get link, set item, set link)
for (private) ListNode attributes.
Rather, we allow LList to access the attributes directly via
dot-notation.

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Properties of the LList Class

Class Invariants

A Class Invariant of a class is a condition which must be true for
the concrete representation of every instance (object) of that class.
For the LList class, these are:

self.size is the number of nodes currently in the list.

If self.size == 0 then self.head is None; otherwise
self.head is a reference to the first ListNode in the list.

The last ListNode (at position self.size - 1) in the list
has its link set to None, and all other ListNode links refer to
the next ListNode in the list.

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Methods of the LList Class

init

def init (self, seq=()):

if seq == ():

self.head = None

else:

self.head = ListNode(seq[0], None)

last = self.head

for item in seq[1:]:

last.link = ListNode(item, None)

last = last.link

self.size = len(seq)

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Methods of the LList Class

len

def len (self):

return self.size

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Methods of the LList Class

find

def find(self, position):

assert 0 <= position < self.size

node = self.head

for i in range(position):

node = node.link

return node

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Methods of the LList Class

append

def append(self, x):

newNode = ListNode(x)

if self.head is not None:

node = self. find(self.size - 1)

node.link = newNode

else:

self.head = newNode

self.size += 1

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Methods of the LList Class

getitem

def getitem (self, position):

node = self. find(position)

return node.item

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Methods of the LList Class

setitem

def setitem (self, position, value):

node = self. find(position)

node.item = value

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Methods of the LList Class

delitem

def delitem (self, position):

assert 0 <= position < self.size

self. delete(position)

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Methods of the LList Class

delete

def delete(self, position):

if position == 0:

item = self.head.item

self.head = self.head.link

else:

prev node = self. find(position - 1)

prev node.link = prev node.link.link

self.size -= 1

return item

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Methods of the LList Class

pop

def pop(self, i=None):

assert self.size > 0 and (i is None or (0 <= i <

self.size))

if i is None:

i = self.size - 1

return self. delete(i)

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Methods of the LList Class

insert

def insert(self, i, x):

assert 0 <= i <= self.size

if i == 0:

self.head = ListNode(x, self.head)

else:

node = self. find(i - 1)

node.link = ListNode(x, node.link)

self.size += 1

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

A Common Problem For any Container Class:
Traversal

Iteration is an Abstraction of Traversal

Container classes can provide efficient access to their contents in
various ways:

random access indexed: (arrays, Python lists, dictionaries)

sequential access: Linked Lists

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

A Common Problem For any Container Class:
Traversal

Traversal Depends on Structure

To process a container class, each item must be visited exactly
once. Different structures will do this differently.

random access indexed:
n = len(lst)

for i in range(n):

print(lst[i])

sequential access: Linked Lists
node = myLList.head

while node is not None:

print(node.item)

node = node.link
CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

A Common Problem For any Container Class:
Traversal

Iteration is Traversal Without Seeing Internal
Structure

A Design Pattern is a strategy which occurs repeatedly in
object-oriented design.
The iterator pattern provides each container class with an
associated iterator class, whose behavior is simply to produce each
item exactly once in some sequence.

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Iterators in Python

The Interface of an Iterator: next()

>>> from LList import *

>>> myList=[1,2,3]

>>> it=iter(myList)

>>> it.next()

1

>>> it.next()

2

>>> it.next()

3

Traceback (most recent call last):

File "<pyshell>", line 1, in <module>

it.next()

StopIteration
CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Iterators in Python

The Interface of an Iterator: the StopIteration

exception

>>> while True:

try:

a = it.next()

except StopIteration:

break

print(a)

1

2

3

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Iterators in Python

The Interface of an Iterator: in

>>> for a in myList:

print(a)

1

2

3

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Adding an Iterator to LList

An Iterator Class for LList

class LListIterator(object):

def init (self, head):

self.currnode = head

def next(self):

if self.currnode is None:

raise StopIteration

else:

item = self.currnode.item

self.currnode = self.currnode.link

return item

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Adding an Iterator to LList

iter Method for LList Class

def iter (self):

return LListIterator(self.head)

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Adding an Iterator to LList

Python for loop

>>> from LList import *

>>> nums = LList([1, 2, 3, 4])

>>> for item in nums:

print(item)

1

2

3

4

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Iterating With A Python Generator

A Generator Object

A Generator Object has the same interface as an iterator.

It is used whenever a computation needs to be stopped to
return a partial result.
(Just as an iterator stops after each item when traversing a
list, and returns that item.)

It continues the computation in steps when called repeatedly.
(Just as an iterator continues its traversal of a container,
returning successive items.)

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Iterating With A Python Generator

A Generator Definition

A Generator Definition combines properties of a function definition
with those of the init method of a class.

It has the format of a function definition.

Instead of return it uses yield, to indicate where a partial
result is returned and the computation frozen until the next
call.

Like a constructor ( init ), it returns a generator object,
which behaves according to the body of the definition.

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Iterating With A Python Generator

Example: Generating A Sequence of Squares

def squares():

num = 1

while True:

yield num * num

num += 1

>>> seq = Squares()

>>> seq.next()

1

>>> seq.next()

4

>>> seq.next()

9

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Iterating With A Python Generator

LList Iterator Reimplemented as Generator

class LList(object):

...

def iter (self):

node = self.head

while node is not None:

yield node.item

node = node.link

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Trade-offs When Storing Sequential
Information

Costs and Benefits of Array Storage

Fast random access.

Slow insertion and deletion.

Efficient memory usage for homogeneous data (no links to
store).

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
LList: A Linked Implementation of a List ADT
Iterators
Links vs. Arrays

Trade-offs When Storing Sequential
Information

Costs and Benefits of Linked Storage

Slow random access.

Faster insertion and deletion.

Requires more memory (link information). If each data item is
small this may double the storage required.

CSI33 Data Structures


	Chapter 4: Linked Structures and Iterators
	LList: A Linked Implementation of a List ADT
	Iterators
	Links vs. Arrays


