
Outline

CSI33 Data Structures

Department of Mathematics and Computer Science
Bronx Community College

September 18, 2017

CSI33 Data Structures



Outline

Outline

1 Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Outline

1 Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Variable Names and References

Assignment Statements

An assignment statement in Python associates an object with the
name of a variable. More precisely, the name is associated with a
reference to an object of some class, or type. This association
remains in effect until a new object reference is associated with the
variable through a new assignment statement.

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Python Assignment Examples

d = ’Dave’

j = d

j = ’John’

d = ’Smith’

d ’Dave’

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Python Assignment Examples

d = ’Dave’

j = d

j = ’John’

d = ’Smith’

’Dave’d

j

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Python Assignment Examples

d = ’Dave’

j = d

j = ’John’

d = ’Smith’

’Dave’d

j ’John’

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Python Assignment Examples

d = ’Dave’

j = d

j = ’John’

d = ’Smith’
’John’

’Dave’d

j

’Smith’

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Namespaces

The Local Dictionary

The values of local variables–those which are currently active, are
kept by Python, along with function names, in a dictionary object,
called a namespace.
This dictionary is available by calling the built-in function
locals(). It can be modified directly. For example, the command
del d removes the name ’d’ from the local namespace.

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Variable Types and References in Python

Dynamic Typing

Dynamic typing in Python means that a variable does not have a
fixed type like int. Rather, its type can change, depending on
what object it refers to for its value. This is because the referent
(the object referred to) contains the type information for that
value. If the variable is assigned to another object, it will then have
the type of the other object.

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Aliasing

lst1 = [1, 2, 3]

lst2 = lst1

lst2.append(4)

lst1

lst1

1 2 3

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Aliasing

lst1 = [1, 2, 3]

lst2 = lst1

lst2.append(4)

lst1

lst1

1 2 3

lst2

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Aliasing

lst1 = [1, 2, 3]

lst2 = lst1

lst2.append(4)

lst1

lst1

1 2 3

lst2

4

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Aliasing

lst1 = [1, 2, 3]

lst2 = lst1

lst2.append(4)

lst1

[1, 2, 3, 4]

lst1

1 2 3 4

lst2

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Copying Variable Values in Python

Deep and Shallow Copy

To avoid the problem of aliasing, we can, by using the copy

function, force a new copy of a value to be created, so when it gets
changed, the original variable, which refers to the original object,
will keep its original value.

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Copying Variable Values in Python

Deep and Shallow Copy

>>>from copy import *

>>> b = [1, [2, 3]]

>>> c = b

1

b

32

c

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Copying Variable Values in Python

Shallow Copy

>>> d = copy(b)

1

d

b

32

c

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Copying Variable Values in Python

Deep Copy

If a container object refers to other objects, these can be copied as
well, using the deepcopy function. >>> e = deepcopy(b)

1

d

b

32

c

e

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Passing Parameters in Function Calls

Formal vs. Actual Parameters

Formal parameters are the variable names used in implementing
the function. They are listed in parentheses after the function
name in the function definition, then used to express the Python
commands needed to perform the algorithm of the function.
Actual parameters are the variable names used by the program
where the function is called with specific values. When it is called,
the function cannot change the value of an actual parameter, but
it can change an object to which the actual parameter refers.

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

A Function Call Example

def func(e, f, g):

e += 2

f.append(4)

g = [8, 9]

print (e, f, g)

def main():

b = 0

c = [1, 2, 3]

d = [5, 6, 7]

func(b, c, d)

print (b, c, d)

b

c

d

0

31 2

5 6 7

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

A Function Call Example

def func(e, f, g):

e += 2

f.append(4)

g = [8, 9]

print (e, f, g)

def main():

b = 0

c = [1, 2, 3]

d = [5, 6, 7]

func(b, c, d)

print (b, c, d)

3

b 0

c

d

1 2

5 6 7

g

f

e

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

A Function Call Example

def func(e, f, g):

e += 2

f.append(4)

g = [8, 9]

print (e, f, g)

def main():

b = 0

c = [1, 2, 3]

d = [5, 6, 7]

func(b, c, d)

print (b, c, d)

3

b 0

c

d

e

f

1 2

5 6 7

g

2

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

A Function Call Example

def func(e, f, g):

e += 2

f.append(4)

g = [8, 9]

print (e, f, g)

def main():

b = 0

c = [1, 2, 3]

d = [5, 6, 7]

func(b, c, d)

print (b, c, d)

3

2

b 0

c

d

e

f

1 2

5 6 7

g

4

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

A Function Call Example

def func(e, f, g):

e += 2

f.append(4)

g = [8, 9]

print (e, f, g)

def main():

b = 0

c = [1, 2, 3]

d = [5, 6, 7]

func(b, c, d)

print (b, c, d)

3

2

b 0

c

d

e

f

1 2

5 6 7

8

g

4

9

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

A Function Call Example

def func(e, f, g):

e += 2

f.append(4)

g = [8, 9]

print (e, f, g)

def main():

b = 0

c = [1, 2, 3]

d = [5, 6, 7]

func(b, c, d)

print (b, c, d)

2 [1, 2, 3, 4] [8, 9]

3

2

b 0

c

d

e

f

1 2

5 6 7

g

4

98

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

A Function Call Example

def func(e, f, g):

e += 2

f.append(4)

g = [8, 9]

print (e, f, g)

def main():

b = 0

c = [1, 2, 3]

d = [5, 6, 7]

func(b, c, d)

print (b, c, d)

2 [1, 2, 3, 4] [8, 9]

0 [1, 2, 3, 4] [5, 6, 7]

3

b 0

c

d

1 2

5 6 7

4

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

A Weakness of Using Arrays to Implement A
List ADT

Problem

Python uses arrays of references to implement the list ADT,
because arrays can easily be traversed by proceeding along a series
of contiguous memory locations. Arrays also allow random access,
that is, jumping quickly to any index location in the array,
according to a formula for the address which is easy to calculate.
But using arrays, the insert and delete operations for lists were
both Θ(n), since they both require copying much of the list to keep
its sequential order. For long lists, this is a problem. Fortunately,
another design for sequential lists is possible which has faster insert
and delete operations (at the cost of slower random access).

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Linked Lists

Data Items As Nodes

Using the idea of a reference (pointer), ordering items into a list
can be accomplished by having each item have its own reference to
the next item. The list can be traversed sequentially by hopping
from each item to the one it refers to. The value of each item is
kept together with the reference/pointer to the next item in an
object called a node.

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Linked Lists

The ListNode Class

We can define a class to support this structure, with attributes
item (for the data value) and link (for the reference to the next
item):

class ListNode(object):

def init (self, item = None, link = None):

"""

post: creates a ListNode with the

specified data value and link

"""

self.item = item

self.link = link

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Building A Linked List

n3 = ListNode(3)

n3

3 None

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Building A Linked List

n3 = ListNode(3)

n2 = ListNode(2, n3)

n3

3 None

n2

2

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Building A Linked List

n3 = ListNode(3)

n2 = ListNode(2, n3)

n1 = ListNode(1, n2)

2

n3n2

3 None

n1

1

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Inserting a Node Into A Linked List

def init (self, item,

link):

self.item = item

self.link = link

n25 = ListNode(2.5, n2.link)

n2.link = n25

1 2

n3n2

3 None

n1

2.5

self

item

link

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Inserting a Node Into A Linked List

def init (self, item,

link):

self.item = item

self.link = link

n25 = ListNode(2.5, n2.link)

n2.link = n25

1 2

n3n2

3 None

n1

2.5self

item

2.5link

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Inserting a Node Into A Linked List

def init (self, item,

link):

self.item = item

self.link = link

n25 = ListNode(2.5, n2.link)

n2.link = n25

1 2

n3n2

3 None

n1

self

item

2.5link

2.5

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Inserting a Node Into A Linked List

def init (self, item,

link):

self.item = item

self.link = link

n25 = ListNode(2.5, n2.link)

n2.link = n25

1 2

n3n2

3 None

n1

2.5

n25

CSI33 Data Structures



Chapter 4: Linked Structures and Iterators
The Python Memory Model
A Linked Implementation of Lists

Inserting a Node Into A Linked List

def init (self, item,

link):

self.item = item

self.link = link

n25 = ListNode(2.5, n2.link)

n2.link = n25

1 2

n3n2

3 None

n1

2.5

n25

CSI33 Data Structures


	Chapter 4: Linked Structures and Iterators
	The Python Memory Model
	A Linked Implementation of Lists


