
Outline

CSI33 Data Structures

Department of Mathematics and Computer Science
Bronx Community College

September 11, 2017

CSI33 Data Structures

Outline

Outline

1 Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

CSI33 Data Structures

Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

Outline

1 Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

CSI33 Data Structures

Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

Interface for the list Class

Lists are Containers

A container class provides objects which contain collections of
other objects. Usually, containers are homogeneous—the data is all
of one type. But a Python list can contain string, int, and float
values at the same time. We will design special-purpose container
classes that are not built-in to Python (or C++), whose methods
will be carefully implemented based on efficiency issues.

CSI33 Data Structures

Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

Interface for the list Class

Python list Method Specifications

Concatenation list1 + list2

Repetition list1 * int1 or int1 * list1

Length len(list1)

Index list1[i]

Slice list1[start:stop:step]

Membership item in list1

Append list1.append(obj1)

Insert list1.insert(int1, obj1)

Delete index list1.pop(i)

Remove object list1.remove(obj1)

CSI33 Data Structures

Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

Interface for the list Class

Parameter Values

The step parameter in the slice operation can be negative (it
means step backwards).

If the step parameter is missing, its default value is assumed
to be 1. (The book only shows start and stop. This will work
to step through each value, since the default step is 1. But to
skip the odd indices, say, you would use step = 2.)

CSI33 Data Structures

Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

Specifying the Deck Class

Sequential Collections

A sequential collection is a container which allows one to
traverse its objects sequentially.

If the collection is not empty, it will have a first item.

Each item (except the last) will have a next item after it.

Starting from the first item, the entire collection is traversed
by going to the next item until the last item is reached.

A deck of cards is a sequential collection: the top card is the
first, when the current card is removed, the next card is now
at the top of the deck. The last card is at the bottom of the
deck.

CSI33 Data Structures

Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

Specifying the Deck Class

Sorted Lists

A sorted list is a homogeneous list where the items are
increasing (each item is less than the next item) or decreasing
(each item is greater than the next item).

The items must be comparable: there is a binary operator (<)
returning a boolean value.

A deck of cards can be sorted, but for games, they are
unsorted by shuffling.

CSI33 Data Structures

Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

Specifying the Deck Class

Problem: To Simulate a Deck of Cards

Provide a class whose objects will behave like a deck of cards: they
can be shuffled and dealt to help simulate card games like poker or
bridge.

CSI33 Data Structures

Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

Specifying the Deck Class

Objects

A Deck object will be a container class for Card objects, which
have rank and suit attributes.

CSI33 Data Structures

Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

Specifying the Deck Class

Methods

shuffle will ensure that dealing cards will produce a random
sequence.

deal will return a card from the deck, removing it from the
deck in the process.

CSI33 Data Structures

Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

Implementing the Deck Class

Concrete Representation

Attributes:

A Python list, cards, of Card objects, as defined in Chapter
2.
Remark: An Abstract Data Type, when implemented, should
only have attributes which are private, that is, with an
underscore () as first character. The book does not do that
here, which is unsafe. If a function outside the class has
access to the concrete representation, then it will become
broken if that representation changes, which is exactly what
we want to avoid.

CSI33 Data Structures

Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

Implementing the Deck Class

Concrete Representation

Methods:

init (self) creates a 52 Card deck.

shuffle(self) prepares for random dealing by putting the list of
Cards in random order.

deal(self), returns a Card object, while removing it from the
list cards.

size(self) returns the number of cards remaining in the list.
(See Deck.py in Chapter 3)

CSI33 Data Structures

Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

Implementing the Deck Class

Concrete Representation

def init (self):

cards = []

for suit in Card.SUITS:

for rank in Card.RANKS:

cards.append(Card(rank,suit))

self.cards = cards

def shuffle(self):

n = self.size()

cards = self.cards

for i,card in enumerate(cards):

pos = randrange(i,n)

cards[i] = cards[pos]

cards[pos] = card

CSI33 Data Structures

Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

Specifying the Hand Class

Problem: To Simulate a Bridge Hand

We want to write a program to play the card game bridge. We can
use the Card and Deck abstractions, but we need a new class to
represent a legal hand for bridge. We need to:

deal: Deal a shuffled deck into 4 13-card bridge hands.

sort: Sort the suits of each hand (Ace is highest), and

dump: print out the contents of each hand. Other methods
will be defined in implementing these basic ones.

CSI33 Data Structures

Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

Specifying the Hand Class

Creating a Bridge Hand

class Hand(object):

def init (self, label=""):

self.label = label

self.cards = []

def add(self, card):

self.cards.append(card)

def sort(self):

self.cards.sort()

self.cards.reverse()

def dump(self):

print(self.label + "’s Cards:")

for c in self.cards:

print(" ", c)

CSI33 Data Structures

Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

Specifying the Hand Class

Comparing Cards

def eq (self, other):

return (self.suit char == other.suit char and

self.rank num == other.rank num)

def lt (self, other):

if self.suit char == other.suit char:

return self.rank num < other.rank num

else:

return self.suit char < other.suit char

def ne (self, other):

return not(self == other)

def le (self, other):

return self < other or self == other

CSI33 Data Structures

Chapter 3: Container Classes
Python Lists
A Sequential Collection: A Deck of Cards
A Sorted Collection: Hand

Specifying the Hand Class

Sorting A Hand Manually With Selection Sort

def sort(self):

cards0 = self.cards

cards1 = []

while cards0 != []:

next card = max(cards0)

cards0.remove(next card)

cards1.append(next card)

self.cards = cards1

CSI33 Data Structures

	Chapter 3: Container Classes
	Python Lists
	A Sequential Collection: A Deck of Cards
	A Sorted Collection: Hand

