
Outline

CSI33 Data Structures

Department of Mathematics and Computer Science
Bronx Community College

August 30, 2017

CSI33 Data Structures



Outline

Outline

1 Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

CSI33 Data Structures



Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

Outline

1 Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

CSI33 Data Structures



Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

From Data Type to ADT

Values

A value is a unit of information used in a program. It can be
associated with a constant or variable (a name) by an assignment
statement:

person = ’George’

n = 4

All primitive type values (integer, float, string) are represented
internally in the computer program’s memory as a series of zeros
and ones.
More complex types have values which are combinations of more
primitive types.

CSI33 Data Structures



Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

From Data Type to ADT

Data Types

A Data Type is the set of possible values which all represent the
same type of information and share the same behavior. In Python,
most data types are classes, and a value of some data type is an
object in that class.

int

str

float

list

dict

file

CSI33 Data Structures



Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

Defining an ADT = Specification

Data Abstraction

The data is represented using abstract attributes. Example: a
card has attributes suit and rank. The behavior is given by
specifying functions, with the signature , preconditions, and
postconditions of procedural abstraction. Data Abstraction is the
hiding of the primitive components comprising the values of some
type, and hiding the implementation of the operations using that
type.

CSI33 Data Structures



Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

Implementation of an ADT

Concrete Representation

The abtract attributes are represented using types from the
programming language or previously defined classes. Example: a
suit is now a member of the Python string class str, and is
allowed to have the values ’c’,’d’, ’h’ or ’s’.

CSI33 Data Structures



Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

Class Specification

Python Classes

ADTs become Python classes, and their behaviors become
methods for those classes.

CSI33 Data Structures



Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

Class Specification

Data Abstraction

In the class definition, a comment will tell how the concrete
representation corresponds to the abstract attributes (for example,
the letter ’c’ corresponds to the suit ’clubs’).

CSI33 Data Structures



Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

Class Specification

Functional Abstraction

Each method specification includes a comment listing all
preconditions and postconditions.

CSI33 Data Structures



Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

Class Implementation

Data Representation

In the class definition, the constructor init will take
parameters to set the attributes of new objects (or use default
values).

CSI33 Data Structures



Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

Class Implementation

Method Implementation

The actual Python code to implement the behavior of each method
follows the comments listing preconditions and postconditions.
Typical methods are mutators, which change attribute values, and
accessors which return attribute values without changing them.

CSI33 Data Structures



Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

Changing the Representation

The Abstraction Barrier

By keeping the specification and implementation separate, it is
possible to change the implementation—say, to use a more
efficient algorithm—without having to change any program that
uses the ADT respectful of its specification.

CSI33 Data Structures



Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

Changing the Representation

The Abstraction Barrier

The program which uses the ADT only has access to it through its
methods, which are written to obey the specification—what types
of parameters are passed and what types of values are returned.
The concrete representation can change, but as long as the
methods have the same signatures, and honors the same contracts
(preconditions and postconditions), the program which calls them
will still work.

CSI33 Data Structures



Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

Object Oriented Design (OOD) and Object
Oriented Programming (OOP)

OOD extends ADTs

Data Abstraction is only one of several ideas that have helped to
advance software engineering. Object Oriented Design and
programming uses ADTs as well as other principles.

CSI33 Data Structures



Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

Object Oriented Design (OOD) and Object
Oriented Programming (OOP)

Encapsulation

Also known as information hiding, this separates the issues of what
to do from issues of how to do it.

CSI33 Data Structures



Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

Object Oriented Design (OOD) and Object
Oriented Programming (OOP)

Polymorphism

This is the principle that sending the same message (that is, calling
the same method) to objects in different classes should make the
objects behave the same.

CSI33 Data Structures



Chapter 2: Data Abstraction
Abstract Data Types
ADTs and Objects

Object Oriented Design (OOD) and Object
Oriented Programming (OOP)

Inheritance

Classes which share behaviors should not have to reimplement
these behavior if they can be inherited from a base class which
implements that same behavior. This principle promotes reuse of
code, which in turn makes software more reliable, since bugs are
more localized.

CSI33 Data Structures


	Chapter 2: Data Abstraction
	Abstract Data Types
	ADTs and Objects


