
Outline

CSI33 Data Structures

Department of Mathematics and Computer Science
Bronx Community College

August 28, 2017

CSI33 Data Structures



Outline

Outline

1 Chapter 1
Functional Abstraction
Algorithm Analysis

CSI33 Data Structures



Outline

Textbook

Data Structures and Algorithms Using Python and C++
David M. Reed and John Zelle

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Outline

1 Chapter 1
Functional Abstraction
Algorithm Analysis

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Functional Abstraction

Functional Abstraction

A functional abstraction (or simply abstraction) is the external
view of a function, as seen from the program that calls it. This
view is sometimes called the function’s interface.

Interface

The function interface consists of its specification (what the
function does) and its signature (function name, list of parameter
types, and the type of the value returned by the function).

Interface Example: sqrt

def sqrt(x):

"""Computes the square root of x"""

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Functional Abstraction

Functional Abstraction

A functional abstraction (or simply abstraction) is the external
view of a function, as seen from the program that calls it. This
view is sometimes called the function’s interface.

Interface

The function interface consists of its specification (what the
function does) and its signature (function name, list of parameter
types, and the type of the value returned by the function).

Interface Example: sqrt

def sqrt(x):

"""Computes the square root of x"""

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Functional Abstraction

Functional Abstraction

A functional abstraction (or simply abstraction) is the external
view of a function, as seen from the program that calls it. This
view is sometimes called the function’s interface.

Interface

The function interface consists of its specification (what the
function does) and its signature (function name, list of parameter
types, and the type of the value returned by the function).

Interface Example: sqrt

def sqrt(x):

"""Computes the square root of x"""

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Design by Contract

Design by Contract

The program calling a function can be considered its client.
Design by contract is formal specification of the preconditions
(true before the function call) and postconditions (true after the
function call).

Preconditions

Preconditions are what the client must provide if the function is
to be expected to perform its task, as the client’s part of the
contract.

Postconditions

Postconditions must be true after the function call, as the
function’s part of the contract.

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Design by Contract

Design by Contract

The program calling a function can be considered its client.
Design by contract is formal specification of the preconditions
(true before the function call) and postconditions (true after the
function call).

Preconditions

Preconditions are what the client must provide if the function is
to be expected to perform its task, as the client’s part of the
contract.

Postconditions

Postconditions must be true after the function call, as the
function’s part of the contract.

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Design by Contract

Design by Contract

The program calling a function can be considered its client.
Design by contract is formal specification of the preconditions
(true before the function call) and postconditions (true after the
function call).

Preconditions

Preconditions are what the client must provide if the function is
to be expected to perform its task, as the client’s part of the
contract.

Postconditions

Postconditions must be true after the function call, as the
function’s part of the contract.

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Defensive Programming

Defensive Programming

Defensive Programming is writing code that checks that all
preconditions are met before allowing the program to proceed.

Testing for preconditions

Testing can be performed in various ways: conditional statements,
raising exceptions, and making assertions.

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Testing for preconditions

Conditional Statements

A negative value returned means error. Each violation of a
function precondition needs its own conditional statement in the
calling program, which is inefficient.

def sqrt(x):

if x < 0:

return -1

...

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Testing for preconditions

Exception Handling

This is better. Different types of error are handled together.
try:

y = sqrt(x)

except ValueError:

print(’bad parameter for sqrt’)

def sqrt(x):

if x < 0:

raise ValueError(’math domain error’)

if type(x) not in (type(1), type(1l),

type(1.0)):

raise TypeError(’number expected’)

...

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Testing for preconditions

Assertions

With assertions, checking can be turned off when the code is
compiled for production, but this is sometimes risky.

def sqrt(x):

assert x >= 0 and type(x) in (type(1), type(1l),

type(1.0))

...

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Top-down Design

Top-down Design

Top-down Design is the decomposition of a single task into
several smaller ones. Each task can the be written as a single
function. This can be repeated, producing an abstraction hierarchy
in which high-level functions call lower level functions until the
programming language itself provides its built-in functions at the
bottom level.

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Top-down Design

API

An application programming interface or API is the interface
for a collection of functions performing related tasks. They are at
the same level of abstraction, and when implemented they can call
each other.

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Top-down Design

Example

Example: The task is to calculate some statistics (high score, low
score, mean, standard deviation) for a given set of data (student
exam scores). This overall task can be divided up:

get scores

calculate minimum score

calculate maximum score

calculate average score

calculate standard deviation

Once this “top level” has been designed, each subtask can be
designed separately. The top level only uses the abstraction of
each function.

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Top-down Design

Side Effects

A side effect is an unexpected result of a function call which
modifies some variable or object in the environment of the function
call. These should always be documented as postconditions. Many
bugs are caused by undocumented side effects.

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Algorithm Analysis

Algorithms

An algorithm is a step-by-step procedure defined for a
mathematical model of computing. It can use variables,
conditional expressions, looping, and sequences of steps. It can be
expressed in pseudocode, flowcharts, or languages such as Python,
C++ or even English.

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Algorithm Analysis

Program Performance

A program will take a certain amount of time to run, and it will
use other resources as well, such as space (memory). This depends
on the size of the input to the program (how many data items are
being processed) and other factors as well, such as the model of
the computer. It is important to use an algorithm which will
guarantee to the user that for reasonably sized inputs the program
will run quickly.

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Algorithm Analysis

Asymptotic Analysis

Asymptotic analysis is a way to compare algorithms to decide
which one will have a faster running time for most inputs. This is
done by determining the function T (n) (which gives the running
time of a given algorithm, depending on the input size n) and then
determining the behavior of this function as n becomes large.

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Algorithm Analysis

Some Math

Suppose that for one algorithm the running time is T1(n) = 4n + 2
while for a second the running time is T2(n) = 3n2. Recall from
precalculus that the rational function

r(x) =
T1(x)

T2(x)
=

4x + 2

3x2
=

4x

3x2
+

2

3x2
=

4

3x
+

2

3x2

approaches zero as x approaches infinity. (So the graph of
y = r(x) has an asymptote on the x-axis, the line y = 0). The
numerator, 4x + 2, becomes insignificant when compared with the
denominator, 3x2 as x goes to infinity. So for large enough n,
T2(n) is greater than T1(n) because it grows faster. If we input
size by a factor of 10, the second algorithm gets about 100 times
slower; the first only gets 10 times slower.

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Algorithm Analysis

Theta (Θ) Notation

Θ-Notation is an abbreviation for the ideas in the last slide. In that
slide, we would say that T1(n) = 4n + 2, a linear function, is a
Θ(n) function, and T2(n) = 3n2, a quadratic function, is Θ(n2). In
other words, to get the Θ of a polynomial function we drop the
lower degree terms and ignore the leading coefficient.
Formally, a function T (n) is Θ(f (n)) if there are constants c1, c2
and n0 such that for all n > n0, T (n) < c1f (n) and T (n) > c2f (n).
In practical terms, a function T (n) is Θ(f (n)) if it “does what
f (n) does” as n gets large.

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Algorithm Analysis

Some Facts About Θ Notation

A Θ(n2) running time will dominate (be eventually slower
than) a Θ(n) running time.

A Θ(1) running time is a constant (times 1) so it does not
grow as n increases. (This is the fastest kind of algorithm.)

A Θ(log n) algorithm is faster than a Θ(n) algorithm.

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Algorithm Analysis

Big O Notation

There is a less precise way to classify functions called ”big-O” or
simply O-notation. A function T (n) is O(n2), for example, if it is
eventually less than cn2 for some c . This limits how large the
running time is for large n, (i.e.how slow the algorithm is), but it
gives less information: there is no lower bound on the growth of
the function T (n)–it could actually be faster than cn for some c .
Thus, T2(n) = 3n2 is O(n2), but so is T1(n) = 4n + 2. (Any O(n)
function is automatically O(n2), since it can be bounded above by
a quadratic function.)

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Algorithm Analysis

There are three types of analysis, possibly giving different running
time functions:

Best case is the fastest possible time. We don’t use this, since
all it tells us is what will happen if you are lucky. This gives
no guarantee to the customer.

Average case is how fast the algorithm runs on average, over
different sets of inputs. It gives a good idea of how much time
the program will use over a long period of time.

Worst case is how fast the algorithm is guaranteed to run.

To get the running time, count each single step as 1 time
unit. Then, using math, calculate how many time units it
takes the entire algorithm to run if the size of the input is n.

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Algorithm Analysis

First Example: Linear Search

def search(items, target):

i = 0

while i < len(items):

if items[i] == target:

return i

i += 1

return -1

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Algorithm Analysis

Analysis of Linear Search (worst case)

Multiply the steps in the body of the loop (2) times the
number of times the loop executes (the worst case is n),
giving 2n.

Add this to the steps outside the loop (2): T (n) = 2n + 2.
The algorithm is Θ(n). (We see that we could have ignored
the number of steps outside the loop, 2, since it is a lower
degree term than 2n.)

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Algorithm Analysis

Second Example: Binary Search (Precondition: items list is sorted)

def search(items, target):

low = 0

high = len(items) - 1

while low <= high:

mid = (low + high) // 2

item = items[mid]

if target == item :

return mid

elif target < item:

high = mid - 1

else:

low = mid + 1

return -1

CSI33 Data Structures



Chapter 1
Functional Abstraction
Algorithm Analysis

Algorithm Analysis

Analysis of Binary Search (worst case)

Each time the loop executes, the list (between high and low)
starts twice as big as after the loop executes.

The algorithm starts with list size of n; it ends when the list
has size 1 (worst case).

So if l = number of times the loop executes, then n = 2l .

In logarithm form, this gives l = log2 n.

The number of steps in the loop is, on average, 5. Two steps
are outside the loop. The total is 5l + 2 = 5(log2 n) + 2.

So this algorithm is Θ(log n). (In Θ notation, we don’t care
what the logarithm base is, since changing from base a to
base b is just multiplying by a constant, logb a.)

The moral: binary search (Θ(log n)) is faster than linear
search (Θ(n)).

CSI33 Data Structures


	Chapter 1
	Functional Abstraction
	Algorithm Analysis


