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1. Introduction

The study of second-order modular forms has been initiated in connection with per-
colation theory ([KZ]) and Eisenstein series formed with modular symbols (cf. [CDO]).
More recently, second-order modular forms have appeared in research on converse theo-
rems.

Specifically, the pursuit of converse theorems for L-functions requiring the minimum
number of twists possible has been a long-standing project of great interest. One of
the approaches, due to B. Conrey and D. Farmer, has been successful in small levels
(cf. [CF]). It transpires that, for the extension of this approach to higher levels, it is
necessary to study a kind of second-order modular form that involves two groups. In
particular, proving that, in some cases, there are no such functions (besides the usual
modular forms) is enough to prove a converse theorem without twists for some levels (cf.
[F]).

Motivated by this relation between such forms and converse theorems of L-functions
and by the success of L-functions in the study of usual modular forms, in this paper we
initiate a study of L-functions of second-order modular forms.

In Section 2, we first define and classify the holomorphic second-order modular forms.
Although the structure of general second-order modular forms has already been deter-
mined in [CDO], a separate discussion is necessary here mainly because we require precise
information about growth in the sequel. Moreover, for our investigations on converse the-
orems mentioned above, we are interested in holomorphic second-order modular forms
that are not invariant under all parabolics.

In section 3 we see that the L-function of a second-order modular form satisfies the
usual functional equation. We did not find a functional equation for the L-function of
a second-order modular form with Fourier coefficients twisted by a Dirichlet character.
Instead, we used the classification theorem to define two twisting operators which do
yield a functional equation (theorem 11).

Given that we do not have a functional equation of the classical type, we should not
expect a converse theorem for second order modular forms. Nevertheless, we managed
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to apply Razar’s method to obtain a criterion for functions satisfying certain 4-term
functional equations to be L-functions of second-order modular forms (theorem 14). The
paper ends with a discussion of the effect of the periodicity on functions satisfying this
criterion and on second-order modular forms in general.

We do believe that the twisted L-function of a second-order modular form should have
a functional equation of the usual type. It seems likely that it will require two Dirichlet
characters and be a 4-term functional equation similar to the one in theorem 14. In
future work we hope to find it along with its converse theorem.

The eventual goal is to extend these results to more general cases and, especially, to
cases related to the converse theorem. For this reason, we have tried to minimize the
dependence of our proofs on the specific features of the functions in [CDO].

2. The space of holomorphic second-order cusp forms

The definitions of the holomorphic automorphic forms under study are now given. We
try to make the conditions and definitions for these spaces as flexible as possible. Some
of this material is standard (see for example [Og], [Iw]) but is included for comparison
with the corresponding facts for second-order modular forms.

Let Γ be a Fuchsian group of the first kind with parabolic elements and of genus g.
Fix a fundamental domain F for Γ\h. We assume its boundary is a polygon and label the
inequivalent cusps with Gothic letters such as a, b. The corresponding scaling matrices
σa, σb in SL2(R) map the neighborhood of each cusp to the upper part of the vertical
strip of width one. This means that σ−1

a Γaσa = Γ∞ for

Γa = {γ ∈ Γ | γa = a},

Γ∞ = {±[ 1 n

0 1
] | n ∈ Z},

where Γ∞ is not necessarily in Γ and ∞ may not be a cusp of F.
For every even k ∈ Z, we define an action of GL2(R)+ on the space of functions on

the upper-half plane h, setting

(f |kγ)(z) := f(γz)(cz + d)−k(det(γ))k/2

for all f : h → C, z = x + iy ∈ h and γ =
[ ∗ ∗

c d

]

∈ GL2(R)+. We extend the action to

C[GL2(R)+] by linearity.

Definition of Sk(Γ). Let k be a positive even integer. Define Sk(Γ) to be the C-vector
space of functions f such that

A1. f : h → C is holomorphic,
A2. f |k(γ − 1) = 0 for all γ in Γ,
A3. (“vanishing at the cusps”)(f |kσa)(z) � e−cy as y → ∞ uniformly in x for a

constant c > 0 and an implied constant both depending on Γ and F.
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We call the elements of this space the holomorphic weight k cusp forms. The growth
condition A3 is simple and natural but it is often useful to know the growth of f in the
entire upper half plane without refering to the cusps.

Proposition 1. Suppose f is holomorphic on h and that yr|f(z)| � 1 for some r > k/2.
If (f |kσa)(z + 1) = (f |kσa)(z) for some cusp a then

(f |kσa)(z) =

∞
∑

n=0

ba(n)e(nz) (1)

where ba(n) � nr for n > 1. If r < k then ba(0) = 0.

Proof: If f is holomorphic then so is f |kσa and, if it is periodic, it must have the
Fourier expansion (1) since any terms e(nz) with n < 0 would violate yr|f(z)| � 1. For
n > 1 we have

ba(n) = e−2π

∫ 1

0

(f |kσa)(x+ i/n)e−2πinx dx

� nk/2
∫ 1

0

Im(σa(x+ i/n))k/2|f(σa(x+ i/n))| dx

� nk/2Im(σa(x+ i/n))k/2−r.

Now

Im((
∗ ∗

c d
)(x+ i/n))−1 = n((cx+ d)2 + c2/n2) � n

for x ∈ [0, 1] and the implied constant depending on c, d. Hence ba(n) � nr.
Also

ba(0) =

∫ 1

0

(f |kσa)(x+ iy) dx

6

∫ 1

0

y−k/2Im(σa(x+ iy))k/2|f(σa(x+ iy))| dx.

As y → ∞ we have 1/y � Im(σa(x + iy)) if σa is not upper triangular. Therefore, as
y → ∞,

ba(0) �

∫ 1

0

Im(σa(x+ iy))k|f(σa(x+ iy))| dx

�

∫ 1

0

yr−kIm(σa(x+ iy))r|f(σa(x+ iy))| dx

� yr−k.
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If σa is upper triangular then y � Im(σa(x+ iy)) as y → ∞ and

ba(0) �

∫ 1

0

|f(σa(x+ iy))| dx

� y−r.

Either way ba(0) = 0, completing the proof. �

We may replace A3 by

A3.1. yk/2|f(z)| � 1 for all z in h.

Lemma 2. We have f ∈ Sk(Γ) if and only if f satisfies A1, A2 and A3.1.

Proof: Any f in Sk(Γ) has exponential decay at each cusp and hence yk/2|f(z)| is
bounded on F. Therefore it is bounded on all of h since yk/2|f(z)| has weight 0.

In the other direction, suppose f satisfies A1, A2 and A3.1. By proposition 1, f
has the Fourier expansion (1) at any cusp a with Fourier coefficients ba(n) � nk/2 and
ba(0) = 0. Therefore f has exponentional decay at any cusp. �

In the proof we showed Hardy’s ‘trivial’ bound of nk/2 for the nth Fourier coefficient
of f in Sk(Γ).
Definition of S2

k(Γ). We define the space S2
k(Γ) to consist of functions f such that

B1. f : h → C is holomorphic,
B2. f |k(γ − 1) ∈ Sk(Γ) for all γ in Γ,
B3. (“vanishing at the cusps”) (f |kσa)(z) � e−cy as y → ∞ uniformly in x for a

constant c > 0 and an implied constant both depending on Γ and F,
B4. f |k(π − 1) = 0 for all parabolic π in Γ.

This is the space of holomorphic, weight k, (parabolic) second-order cusp forms. It is
similar to Sk(Γ), the only difference being the transformation rule B2.

We recall the definitions of the functions Λi in [CDO]. For each of the 2g hyperbolic
generators of Γ (labeled γi) we may define

Λi(z) =

∫ z

z0

gi(w) dw +

∫ z

z0

hi(w) dw

for gi and hi in S2(Γ) and z0 an arbitrary fixed element of h (usually taken to be the
imaginary number i) to satisfy

Λi(γjz) − Λi(z) = δij

and also
Λi(γz) − Λi(z) = 0

for the parabolic and elliptic generators γ of Γ. For convenience we also set Λ0 ≡ 1.
We need the following result.
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Lemma 3. For 1 6 i 6 2g, all z in h, all γ ∈ Γ and any cusp a we have

Λi(z) � | log Im(σ−1
a γz)| + 1.

with the implied constant depending on γ,Γ and F.

Proof: We have

Λi(γ
−1σaz) =

∫ γ−1σaz

z0

gi(w) dw +

∫ γ−1σaz

z0

hi(w) dw

=

∫ z

σ−1

a
γz0

(gi|2σa)(w) dw+

∫ z

σ−1

a
γz0

(hi|2σa)(w) dw.

Note that gi|2σa and hi|2σa are elements of S2(σ
−1
a Γσa) and by A3.1 satisfy (gi|2σa)(w),

(hi|2σa)(w) � Im(w)−1 for all w in h. Also, by the Fourier expansion (1),we have

∫ z+1

z

(gi|2σa)(w) dw = 0

and the same for hi|2σa so that

Λi(γ
−1σaz) �

∫ iy

σ−1

a
γz0

Im(w)−1 dw � | log y| + 1.

This completes the proof. �

Theorem 4. We have f in S2
k(Γ) if and only if f : h → C is holomorphic and may be

written as

f =

2g
∑

i=0

fiΛi

where fi is in Sk(Γ) for i > 0 and f0 is a smooth function on h of weight k that satisfies
A2 and A3, i.e. (f0|kσa)(z) � e−cy as y → ∞ uniformly in x for some c > 0. Also, for
fixed Λi, the functions fi are uniquely defined by f .

Proof: In one direction, if f =
∑2g
i=0 fiΛi then f |k(γi − 1) = fi for all hyperbolic

generators γi. Also f |k(γ− 1) = 0 for γ a parabolic or elliptic generator. Conditions B2
and B4 now hold since they are true for the generators of the group. To verify B3 we
see that, by lemma 3, f will have exponential decay at the cusps if each fi does.

In the other direction, given any f ∈ S2
k(Γ) set fi = f |k(γi − 1) for 1 6 i 6 2g and

f0 = f−
∑2g

i=1 fiΛi. It is clear that f0 is smooth, has weight k and has exponential decay
at each cusp.

Finally, that the functions fi are uniquely determined by f is clear. �

A weaker condition than B2 is:

B2.1. f |k(γ − 1)(δ − 1) = 0 for all γ, δ in Γ.
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The combination B1, B2.1, B3 and B4 does not give S2
k(Γ). We need to strengthen

B3 in this case to have exponential decay on all the images of F under the group action.
Note that if a is a cusp of F then γa will be a cusp of γF and σγa = γσa since σγa∞ =
γσa∞ = γa and σ−1

γa Γγaσγa = Γ∞. Therefore exponential decay for all images of F

means the following:

B3’. for all γ ∈ Γ we have (f |k(γσa))(z) � e−cy as y → ∞, uniformly in x with c and
the implied constant depending on γ, Γ and F.

It is easy to see that we then have

Lemma 5. f ∈ S2
k(Γ) if and only if f satisfies B1, B2.1, B3’ and B4.

This was the definition of S2
k(Γ) given in [CDO]. The analog of A3.1 is

B3.1. yk/2(| log Im(σ−1
a γz)| + 1)−1|f(z)| � 1 for all z in h, all γ in Γ and any cusp a

with the implied constant depending on γ,Γ and F.

Lemma 6. We have f ∈ S2
k(Γ) if and only if f satisfies B1, B2.1, B3.1 and B4.

Proof: For f ∈ S2
k(Γ), B2.1 is clearly true and we need only check that B3.1 holds.

By theorem 4 and lemma 3

yk/2

| log Im(σ−1
a γz)| + 1

|f(z)| 6
yk/2|f0(z)|

| log Im(σ−1
a γz)| + 1

+

2g
∑

i=1

yk/2|fi(z)|
|Λi(z)|

| log Im(σ−1
a γz)| + 1

� 1.

Conversely, suppose f satisfies B1, B3.1 and B4. Proposition 1 can be adapted to show
that f satisfies (1) for ba(n) � nk/2 logn and ba(0) = 0. Thus f has exponential decay on
the cusps of F: (f |kσa)(z) � e−2πy as y → ∞ uniformly in x. Replace σa by σγa = γσa

in the above proof to show that it also has exponential decay on the cusps of γF. Thus
the difference (f |kγ)(z)− f(z) has exponential decay at the cusps and with B2.1 it has
weight k. Conditions B2 and B3 (or alternatively B3’) now follow. �

The proof of lemma 6 also gives

Lemma 7 (‘Trivial’ bound). The nth Fourier coefficient of a holomorphic second-
order cusp form of weight k is � nk/2 log n.

In view of the ‘twist-less’ converse theorem we seek, we are also interested in the larger
space of second-order cusp forms that do not necessarily satisfy B4, i.e. for parabolic
elements π we may not have f |k(π − 1) = 0.

Definition of PS2
k(Γ). Define this space to be all functions satisfying

B1. f : h → C is holomorphic,
B2.1. f |k(γ − 1)(δ − 1) = 0 for all γ, δ in Γ,
B3*. (“vanishing at the cusps”) for all γ ∈ Γ we have (f |k(γσa))(z) � e−cy(1 + |x|) as

y → ∞, with c and the implied constant depending on γ, Γ and F.
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To formulate theorem 9 (the analog of the classification theorem 4) we need to define
the space of all modular forms, not necessarily with exponential decay at the cusps.

Definition of Mk(Γ). Let Mk(Γ) denote functions satisfying the conditions A1, A2
and C3 where

C3. (f |kσa)(z) � 1 as y → ∞ uniformly on h.

With proposition 1 we may check that C3 can be replaced by the equivalent condition

C3.1. yk|f(z)| � 1 for all z in h.

Recall that the group Γ is generated by 2g hyperbolic elements γi, m parabolic elements
πj and a number of elliptic elements. One of the parabolic generators may be expressed
in terms of the other generators. For 2g + 1 6 i 6 2g +m − 1 we may define functions
Λi which satisfy

Λi(πjz) − Λi(z) = δ(i−2g)j

and
Λi(γz) − Λi(z) = 0

for all other non-parabolic generators γ of Γ. By the Eichler-Shimura isomorphism, see
[CDO] for example, for 2g + 1 6 i 6 2g +m− 1 we may write

Λi(z) =

∫ z

z0

gi(w) dw +

∫ z

z0

hi(w) dw

with gi ∈ M2(Γ), hi ∈ S2(Γ) and fixed z0 in h. Now, as in the proof of lemma 3, for
gi ∈M2(Γ) we see (with C3.1) that

∫ γ−1σαz

z0

gi(w)dw �
1

y
+

|x|

y2
+ 1.

Therefore,

Λi(γ
−1σαz) �

1

y
+

|x|

y2
+ | log y| + 1

and the analog of lemma 3 is

Lemma 8. For 2g + 1 6 i 6 2g +m− 1, all z ∈ h, γ ∈ Γ and any cusp α we have

Λi(z) �
1

Im(σ−1
α γz)

+
|Re(σ−1

α γz)|

Im(σ−1
α γz)2

+ | log Im(σ−1
α γz)| + 1

with the implied constant depending on γ, Γ and F.

In a way similar to the proof of theorem 4, we can then use lemma 8 to show
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Theorem 9. We have f in PS2
k(Γ) if and only if f : h → C is holomorphic and may be

written as

f =

2g+m−1
∑

i=0

fiΛi

where fi is in Sk(Γ) for i > 0 and f0 is a smooth function on h of weight k that satisfies
A2 and A3, i.e. (f0|kσa)(z) � e−cy as y → ∞ uniformly in x for some c > 0. Also, for
fixed Λi, the functions fi are uniquely defined by f .

3. Functional equations

We now specialize to the case Γ = Γ0(N), for a fixed positive integer N and write Sk(N)

for Sk(Γ0(N)) etc. Set WN :=
[

0 −1

N 0

]

and define f̂ := f |kWN for f a weight k, first or

second order modular form.

Proposition 10. If f ∈ Sk(N) and F ∈ S2
k(N) then f̂ ∈ Sk(N) and F̂ ∈ S2

k(N).

Proof: Since WN normalizes Γ0(N), f̂ satisfies A2. It also satisfies A3.1 because

y
k

2 |f̂(z)| = y
k

2N− k

2 |z|−k|f(
−1

Nz
)| � y

k

2N− k

2 |z|−kIm(
−1

Nz
)−

k

2 � 1.

Therefore, by lemma 2, f̂ ∈ Sk(N).

In a similar way, if F ∈ S2
k(N), then F̂ satisfies B1, B2.1 and B4. On the other hand,

y
k

2 (| log(Im(σ−1
a γz))| + 1)−1|F̂ (z)| = y

k

2 (| log(Im(σ−1
a γz))| + 1)−1N− k

2 |z|−k|F (
−1

Nz
)|

� (| log(Im(σ−1
a γz))| + 1)−1(| log(Im(σ−1

b
δWNz))| + 1)

for every cusp b and each δ ∈ Γ0(N). The final step is to choose b and δ so that
σ−1

a γ = σ−1
b
δWN : Since γ−1a and WNγ

−1a are also cusps of Γ0(N) we must have
b = δWNγ

−1a for a b in the set of inequivalent cusps and a δ ∈ Γ0(N). Because of the
relation στa = τσa, this implies that σ−1

a γ = σ−1
b
δWN . �

If F (z) =
∑∞
n=1 ane

2πnz ∈ S2
k(N), then its L-function is defined by

L(s, F ) =
∞
∑

n=1

an
ns

= (2π)sΓ(s)−1Λ(s, F )

for Λ(s, F ) =
∫∞

0
F (iy)ys−1dy. Since ∞ and 0 are cusps of Γ0(N), where F has exponen-

tial decay, we see that L(s, F ) has a meromorphic continuation to s ∈ C. The functional
equation

i−kN
k

2
−sΛ(k − s, F ) = Λ(s, F̂ )
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follows by a simple change of variables in the above integral just as in the case of L-
functions of first order cusp forms.

In order to get a functional equation for the L-function of F twisted by a Dirichlet
character we may define two twisting operators as follows.

First of all, for any function g on h and a Dirichlet character χ mod N, we set

gχ(z) =
∑

0<m<N

χ(m)g

(

z +m

N

)

Here, as in all the sums appearing in the sequel, the sum ranges only over integers that

are relative prime to the modulus. Set T =
[

0 −1

1 0

]

. It is known (cf. [R]) that f is

Γ0(N)-invariant if and only if it is periodic with period 1 and

fχ|kT = χ(−1)fχ̄. (2)

For F ∈ PS2
k(N) decomposed as in theorem 9, we define

Fχ =

2g+m−1
∑

i=1

(fi)χΛi + (f0)χ

and its “contragredient”

F̌χ(z) =

2g+m−1
∑

i=1

(fi)χ(z)

(

∫ z

i

(gi|2T )(w)dw +

∫ z

i

(hi|2T )(w)dw

)

+ (f0)χ(z).

We also set

L(s, F, χ) := (2π)sΓ(s)−1Λ(s, F, χ) = (2π)sΓ(s)−1

∫ ∞

0

Fχ(iy)ys−1dy and

L∗(s, F, χ) := (2π)sΓ(s)−1Λ∗(s, F, χ) = (2π)sΓ(s)−1

∫ ∞

0

F̌χ(iy)ys−1dy.

Theorem 11. For F ∈ PS2
k(N) the following functional equation holds:

Λ(k − s, F, χ) = ikχ(−1)Λ∗(s, F, χ̄).

Proof. Apply T to Fχ to get

Fχ|kT =

2g+m−1
∑

i=0

((fi)χ|kT )(z)Λi(Tz)

=

2g+m−1
∑

i=1

((fi)χ|kT )(z)

(

∫ Tz

i

gi(w)dw +

∫ Tz

i

hi(w)dw

)

+ (f0)χ|kT.
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Since T fixes i, we can make the change of variables w → Tw in the integrals. This, in
combination with (2), gives

χ(−1)
(

2g+m−1
∑

i=1

(fi)χ̄(z)

∫ z

i

(gi|2T )(w)dw +

∫ z

i

(hi|2T )(w)dw + (f0)χ̄(z)
)

= χ(−1)F̌ χ̄.

It should be noted that, although f0 is not necessarily holomorphic, (2) applies to it too
because the derivation of (2) depends only on algebraic manipulations on Z[GL2(R)].
Applying the Mellin transform to this equality we obtain

i−k
∫ ∞

0

Fχ(
i

y
)ys−k

dy

y
= χ(−1)

∫ ∞

0

F̌ χ̄(iy)ys
dy

y
.

The change of variables y → 1
y in the first integral implies the functional equation.

We cannot use this theorem directly in order to obtain a meaningful converse theorem
for second-order modular forms. The reason is that, in this approach, we must be able
to isolate the functions fi from the given function F for the above functional equation
to even be set up. The functions fi are F |k(γi − 1) for certain elements γi of Γ and in
the next section we give a criterion for a function to be in PS2

k which is based on each
F |k(γi − 1) separately.

4. A converse theorem

For c, c1 ∈ {1, . . . , N}, let ψ be a Dirichlet character mod(Nc1) and let χ, ω be Dirichlet
characters mod(Nc). Set

Fχ,ψ,ω :=
∑

0<m,b<Nc
0<a<Nc1

ψ(a)χ(m)ω(b)F
∣

∣

∣

k

[

c ac− bc1 +mc1
0 Ncc1

]

and

Fχ,ψ,ω :=
∑

0<m,b<Nc
0<a<Nc1

ψ(a)χ(m)ω(b)F
∣

∣

∣

k

[

mc m(ac− bc1) − c1
Nc2 Nc(ac− bc1)

]

.

We need to fix a set of generators for Γ0(N). To this end we use the following

Lemma 12. [R] (i) Let c be a positive integer. For each 0 < a < Nc ((a,Nc) = 1)

choose one matrix Va =
[

a ba

Nc da

]

∈ Γ0(N) such that −Nc < da < 0. If Sc denotes the set

of all such matrices then
⋃N
c=1 Sc ∪ {

[

1 1

0 1

]

} ∪ {
[

−1 0

0 −1

]

} generates Γ0(N).

(ii) If N = pr (p prime), then Γ0(N) is generated by {
[

−1 0

0 −1

]

,
[

1 1

0 1

]

and
[

a b

N d

]

∈

Γ0(N), as a ranges over a system of residues mod N prime to N.

We will also need a lemma from [Fl]. Since it has not been published and since our
statement is somewhat more general than that in [Fl], we give a proof here.

10



Lemma 13. [Fl] Set T =
[

0 −1

1 0

]

. Let χ be a character mod(Nc) and let F be a function

on h. Then,

Fχ|kT = χ(−1)Fχ̄ + χ(−1)qχ

where qχ =
∑

0<a<Nc χ̄(da)qVa

(

z−da

Nc

)

and qVa
= F |kVa − F .

Proof. We have

Va

(

z − da
Nc

)

=
−z−1 + a

Nc
and Nc

(

z − da
Nc

)

+ da = z.

Therefore,

(Fχ|kT )(z) = z−kFχ(−z
−1) =

∑

0<a<Nc

χ(a)z−kF

(

−z−1 + a

Nc

)

=
∑

0<a<Nc

χ(a)(F |kVa)

(

z − da
Nc

)

= χ(−1)
∑

0<a<Nc

χ̄(−da)(F |kVa)

(

z − da
Nc

)

. (3)

Here we use the fact that ada −Nbac = 1 and therefore χ(a)χ(da) = 1.
On the other hand, −da ranges over the elements of {1, . . . , Nc} prime to Nc, as a

ranges over the same set. Hence,

Fχ̄(z) =
∑

0<a<Nc

χ̄(−da)F

(

z − da
Nc

)

.

On subtraction from (3) we obtain

(Fχ|kT )(z) − χ(−1)Fχ̄(z) = χ(−1)
∑

0<a<Nc

χ̄(−da)qVa

(

z − da
Nc

)

. �

Theorem 14. Let F be a holomorphic function on h such that, for all γ ∈ Γ0(N),
(f |k(γσa))(z) � e−cy(1 + |x|) as y → ∞, with c and the implied constant depending
on γ, Γ and F. Suppose that for all Dirichlet characters χ, ω mod(Nc), ψ mod(Nc1)
(c, c1 ∈ {1, . . . , N}) Fχ,ψ,ω(iy) and Fχ,ψ,ω(iy) decay exponentially as y → ∞ and y → 0.
Set

Φ1(s, χ, ψ, ω) :=

∫ ∞

0

Fχ,ψ,ω(iy)ys−1dy and Φ2(s, χ, ψ, ω) :=

∫ ∞

0

Fχ,ψ,ω(iy)ys−1dy.
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If F |k(
[

1 1

0 1

]

− 1)(γ − 1) = F |k(γ − 1)(
[

1 1

0 1

]

− 1) = 0 and the functional equation

χ(−1)i−kΦ2(k − s, χ, ψ, ω)− ikΦ1(k − s, χ̄, ψ, ω)

= ψ(−1)χ(−1)Φ2(s, χ, ψ̄, ω) − Φ1(s, χ̄, ψ̄, ω)

is true, then F ∈ PS2
k(N).

Proof. We see that Φ1 and Φ2 converge to analytic functions of s for all s ∈ C. It follows
by the Mellin inversion formula that

1

2πi

∫ σ+i∞

σ−i∞

Φ1(s, χ, ψ, ω)y−sds = Fχ,ψ,ω(iy),

1

2πi

∫ σ+i∞

σ−i∞

Φ2(s, χ, ψ, ω)y−sds = Fχ,ψ,ω(iy).

are valid for every σ =Res ∈ R. Replace s by k − s and y by 1
y

in the above to see that

the functional equation assumed in the theorem implies that

(iy)−kχ(−1)Fχ,ψ,ω(
−1

iy
) = (iy)−kFχ̄,ψ,ω(

−1

iy
) + ψ(−1)χ(−1)Fχ,ψ̄,ω(iy) − Fχ̄,ψ̄,ω(iy).

Since all the functions involved are analytic, this equality is true on the entire upper-half
plane and we can rewrite it in the form

[

χ(−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)
∑

0<m<Nc

χ(m)F
∣

∣

∣

k

[

mc m(ac− bc1) − c1
Nc2 Nc(ac− bc1)

]

]

∣

∣

∣

k
T

−

[

∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)
∑

0<m<Nc

χ̄(m)F
∣

∣

∣

k

[

c ac− bc1 +mc1
0 Ncc1

]

]

∣

∣

∣

k
T

− χ(−1)ψ(−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ̄(a)
∑

0<m<Nc

χ(m)F
∣

∣

∣

k

[

mc m(ac− bc1) − c1
Nc2 Nc(ac− bc1)

]

+
∑

0<b<Nc
0<a<Nc1

ω(b)ψ̄(a)
∑

0<m<Nc

χ̄(m)F
∣

∣

∣

k

[

c ac− bc1 +mc1
0 Ncc1

]

= 0 or

12



χ(−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)
∑

0<m<Nc

χ(m)F
∣

∣

∣

k

[

1 m
0 Nc

]

T

[

c ac− bc1
0 c1

]

T

−
∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)
∑

0<m<Nc

χ̄(m)F
∣

∣

∣

k

[

1 m
0 Nc

] [

c ac− bc1
0 c1

]

T

− χ(−1)ψ(−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ̄(a)
∑

0<m<Nc

χ(m)F
∣

∣

∣

k

[

1 m
0 Nc

]

T

[

c ac− bc1
0 c1

]

+
∑

0<b<Nc
0<a<Nc1

ω(b)ψ̄(a)
∑

0<m<Nc

χ̄(m)F
∣

∣

∣

k

[

1 m
0 Nc

] [

c ac− bc1
0 c1

]

= 0. (4)

We can further use the definition of Fχ (of Section 3) to write the last equality in the
form:

χ(−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)Fχ

∣

∣

∣

k
T

[

c ac− bc1
0 c1

]

T

=
∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)Fχ̄

∣

∣

∣

k

[

c ac− bc1
0 c1

]

T

− χ(−1)ψ(−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ̄(a)Fχ

∣

∣

∣

k
T

[

c ac− bc1
0 c1

]

+
∑

0<b<Nc
0<a<Nc1

ω(b)ψ̄(a)Fχ̄

∣

∣

∣

k

[

c ac− bc1
0 c1

]

= 0 or

χ(−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)
(

Fχ|kT − χ(−1)Fχ̄

)
∣

∣

∣

k

[

Nc Nac−Nbc1
0 Nc1

]

T

= χ(−1)ψ(−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ̄(a)
(

Fχ|kT − χ(−1)Fχ̄

)
∣

∣

∣

k

[

Nc Nac−Nbc1
0 Nc1

]

.

Since
[

Nc Nac−Nbc1
0 Nc1

]

=
[

Nc −b

0 1

] [

1 d

0 Nc1

]

we have

∑

0<b<Nc

ω(b)
∑

0<a<Nc1

ψ(a)
((

Fχ|kT − χ(−1)Fχ̄

)
∣

∣

∣

k

[

Nc −b
0 1

]

) [

1 a

0 Nc1

]

T

= ψ(−1)
∑

0<b<Nc

ω(b)
∑

0<a<Nc1

ψ̄(a)
((

Fχ|kT − χ(−1)Fχ̄

)
∣

∣

∣

k

[

Nc −b
0 1

]

) [

1 a

0 Nc1

]

.
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Or, by the defining formula for the twist of a function,

∑

0<b<Nc

ω(b)
((

Fχ|kT − χ(−1)Fχ̄

)∣

∣

∣

k

[

Nc −b
0 1

]

)

ψ

∣

∣

∣

k
T

= ψ(−1)
∑

0<b<Nc

ω(b)
((

Fχ|kT − χ(−1)Fχ̄

)
∣

∣

∣

k

[

Nc −b
0 1

]

)

ψ̄
.

By character summation (over characters ω mod(Nc)) we obtain

((

Fχ|kT − χ(−1)Fχ̄

)
∣

∣

∣

k

[

Nc −b
0 1

]

)

ψ

∣

∣

∣

k
T

= ψ(−1)
((

Fχ|kT − χ(−1)Fχ̄

)
∣

∣

∣

k

[

Nc −b
0 1

]

)

ψ̄

for all b ∈ {1, . . . , Nc} with ((b,Nc) = 1).

Now, for a = 1, . . . , Nc, prime to Nc and b = −da > 0, this implies

(

∑

χ (mod Nc)

χ(da)
(

Fχ|kT − χ(−1)Fχ̄

)
∣

∣

∣

k

[

Nc da

0 1

]

)

ψ

∣

∣

∣

k
T

= ψ(−1)
(

∑

χ (mod Nc)

χ(da)
(

Fχ|kT − χ(−1)Fχ̄

)
∣

∣

∣

k

[

Nc da

0 1

]

)

ψ̄
.

By the usual character summation argument, lemma 13 then implies that the sum inside
the parentheses equals φ(Nc)qVa

, where φ denotes Euler’s function. So the last equality
can be rewritten as

(qVa
)ψ|kT = ψ(−1)(qVa

)ψ̄,

for all Va ∈ Sc.

From (2) (together with our assumption on the periodicity of F |k(γ − 1)’s) we can
then deduce that qVa

= F |kVa − F is invariant under Γ0(N). Therefore, F |k(Va − 1)γ =

F |k(Va−1) for all γ ∈ Γ0(N). On the other hand, we have also assumed that F |k(
[

1 1

0 1

]

−

1)(γ−1) = 0 for all γ ∈ Γ0(N). Now, if F |k(γ1−1)(γ−1) = 0 and F |k(γ2−1)(γ−1) = 0
for all γ ∈ Γ0(N) then F |k(γ1γ2 − 1)(γ − 1) = 0 because (γ1γ2 − 1)(γ − 1) = (γ1 −
1)(γ2γ − 1) − (γ1 − 1)(γ2 − 1) + (γ2 − 1)(γ − 1). According to lemma 12(i), Γ0(N) is

generated by the Va’s, the translations and
[

−1 0

0 −1

]

. Therefore, F satisfies B2.1 and

thus by definition, F ∈ PS2
k(N). �

The following corollary of the proof allows us to distinguish the case that F is a
“trivial” second-order modular form, that is, a usual cusp form.
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Proposition 15. If in the statement of theorem 14, the left-hand side of the functional
equation vanishes then F is a usual cusp form.

Proof. We can repeat the first steps of the proof of theorem 14. Our assumption implies
that (4) can be read as

χ(−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)
∑

0<m<Nc

χ(m)F
∣

∣

∣

k

[

1 m
0 Nc

]

T

[

c ac− bc1
0 c1

]

T

−
∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)
∑

0<m<Nc

χ̄(m)F
∣

∣

∣

k

[

1 m
0 Nc

] [

c ac− bc1
0 c1

]

T

A character summation over ω mod(Nc) and ψ mod(Nc1) together with the definition of
Fχ implies that Fχ = χ(−1)Fχ̄ for all χ mod(Nc) and, according to [R], F ∈ Sk(N). �

5. Periodicity

Let S =
[

1 1

0 1

]

. In theorem 14 we had to include the assumption F |k(γ − 1)(S − 1) =

F |k(S − 1)(γ − 1) = 0 for all γ ∈ Γ0(N). The second equality is clearly satisfied if F has
period 1. In this section we examine how the imposition of this stronger assumption of
periodicity affects F.

Indeed, suppose that F |k(S−1) = 0 and that F |k(γ−1)(S−1) = 0 for all γ ∈ Γ0(N).

Then F |kγS = F |kγ, i.e. F is invariant under the group Γ̃0(N) generated by the γSγ−1’s
(γ ∈ Γ0(N)). It is reasonable to ask whether this invariance implies the modularity of F,
thus making the remaining assumptions of the theorem redundant. We will show that,
for N ≥ 4, this is far from being the case.

Specifically, set
Γ̃1(N) = 〈γ−1Sγ | γ ∈ Γ1(N)〉.

As usual, we identify the groups with their images in PSL(2,Z).

Theorem 16. Γ̃0(N) has infinite index in SL(2,Z) for N ≥ 4.

Proof: It is well-known that, for N ≥ 4, Γ1(N) is free and its rank equals

r := 1 +
N2

12

∏

p|N

(1 −
1

p2
). (5)

Next note that Γ1(N) E Γ0(N) and |Γ0(N) : Γ1(N)| = 1
2φ(N) =: f , say. Let g1 =

1, g2, . . . , gf be a set of coset representatives of Γ1(N) in Γ0(N).
Observe that

Γ̃0(N) = 〈g−1
i γ−1Sγgi | γ ∈ Γ1(N), 1 ≤ i ≤ f〉

= 〈g−1
i Γ̃1(N)gi|1 ≤ i ≤ f〉.
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Set ∆i(N) = g−1
i Γ̃1(N)gi. Because ∆1(N) = Γ̃1(N) E Γ1(N) E Γ0(N) then ∆i(N) E

Γ1(N) for each i, and therefore

Γ̃0(N) = ∆1(N) . . .∆f (N) ≤ Γ1(N). (6)

Set Si = g−1
i Sgi. We then also have

∆i(N) = 〈γ−1Siγ | γ ∈ Γ1(N)〉 = 〈Si[Si, γ] | γ ∈ Γ1(N)〉 (7)

where we use standard notation [x, y] = x−1y−1xy for elements x, y in a group.
Now let A be the abelianization of the group Γ1(N), i.e. the quotient of Γ1(N) by its

commutator subgroup. Because Γ1(N) is free then

A ∼= Zr

where r is given by (5). It follows from the second equality in (7) that the image of each
∆i(N) in A is cyclic, being generated by the image of Si. Hence by (6), the image of

Γ̃0(N) in A has rank no greater than f . If we can show that

r > f

then it follows immediately that the Theorem holds. But this is a triviality: it says that

1 +
N2

12

∏

p|N

(1 −
1

p2
) >

1

2
φ(N) =

N

2

∏

p|N

(1 −
1

p
),

that is
2

φ(N)
+
N

6

∏

p|N

(1 +
1

p
) > 1,

which is obvious. �

On the other hand, we have

Proposition 17. For 1 ≤ N ≤ 3, Γ̃(N) = Γ0(N
2).

Proof: N = 1. We want to prove that Γ0(1) = Γ(1) can be generated by γSγ−1 (γ ∈

Γ(1)). A simple check shows that T = −S2P, where P =
[

2 1

−1 0

]

=
[

1 1

−1 0

]

S
[

1 1

−1 0

]−1

.

Since S2 ∈ Γ̃(1), this settles the case N = 1.
N = 2. Γ0(4) (or, more precisely, its projection onto PSL2(Z)) is generated by S, P1 =

[

−1 0

4 −1

]

and P2 =
[

1 −1

4 −3

]

. This can be seen by lemma 12(ii). However, P1P2 = −S−1.

Thus, since S−1 ∈ Γ̃(2) (obviously), it suffices to prove that P2 ∈ Γ̃(2). Indeed,

P2 = −
[

1 0

2 1

]

S
[

1 0

−2 1

]−1
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and our result follows for N = 2.
N = 3. By lemma 12(ii), Γ0(9) is generated by S, P1 =

[

−1 0

9 −1

]

, P2 =
[

2 −1

9 −4

]

, P3 =
[

5 −4

9 −7

]

, P4 =
[

7 −4

9 −5

]

, P5 =
[

4 −1

9 −2

]

and P6 =
[

1 0

9 1

]

. Since P4 = −P−1
3 , P5 = −P−1

2 ,

P6 = −P−1
1 and P1P2P3 = S−1 it is sufficient to show that P2 and P3 are in Γ̃(3). Indeed,

P2 = −
[

1 −1

3 −2

]

S
[

1 −1

3 −2

]−1

and P3 = −
[

2 1

3 2

]

S
[

2 1

3 2

]−1

. �

We also observe that the invariance under Γ0(N
2) implied by proposition 17 (when

N = 1, 2, 3) for functions satisfying the assumptions of Theorem 14, in fact implies
modularity for Γ0(N). This is a consequence (with Γ1 = Γ0(N), Γ2 = Γ0(N

2)) of

Proposition 18. If F satisfies B2.1 for Γ1 and is invariant under a group Γ2 with
[Γ1 : Γ2] <∞, then F is invariant under Γ1.

Proof: Since Γ2 contains a subgroup of finite index which is normal in Γ1, we can
assume, without loss of generality, that Γ2 is normal in Γ1. Let µ = [Γ1 : Γ2]. Then, for
γ ∈ Γ1, γ

µ ∈ Γ2. Thus, F |kγ
µ − F = 0. On the other hand, F |kγ − F is invariant under

Γ1, therefore we have:

0 = F |k(γ
µ − 1) = F |k(γ − 1)(γµ−1 + · · ·+ 1) = µF |k(γ − 1)

for all γ ∈ Γ1. �

We should finally remark that the discussion of this paragraph applies more generally
to all periodic second-order modular forms and therefore it can be made independently
of theorem 14. This is a consequence of

Proposition 19. Every periodic second-order modular form G is Γ̃0(N)-invariant.

Proof: Let F be a periodic second-order modular form. For all γ, δ, ε ∈ Γ0(N) we have:

F |k(γδε− γ − δ − ε+ 2) = F |k((γδ − 1)(ε− 1) + (γ − 1)(δ − 1)) = 0.

For δ = S and ε = γ−1 this gives F |k(γSγ
−1 − γ − S − γ−1 + 2) = 0. This, in turn, in

combination with F |k(γ+γ−1−2) = F |k(γ−1)(γ−1−1) = 0 implies F |k(γSγ
−1−1) = 0

for all γ ∈ Γ0(N). �

Therefore, we can deduce from propositions 17 and 18 that, for N = 1, 2, 3, if F ∈
S2
k(N) and F (z + 1) = F (z) then F ∈ Sk(N).
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