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1. Introduction.

In [G1], [G2], the distribution of modular symbols is studied and a new class of
functions which satisfy a transformation law involving these objects is introduced.
The goal of Goldfeld’s program is to prove Szpiro’s conjecture which states that for
elliptic curves with minimal discriminant D and conductor N there is an absolute
constant κ such that D ¿ Nκ. To do this, an equivalent conjecture involving modular
symbols is established in [G4] using the, now proven, conjecture of Shimura, Taniyama
and Weil. It seems that a sufficiently good understanding of the new series proposed
by Goldfeld should yield a resolution of these conjectures. We repeat here their
definition in a somewhat more general form to include period polynomials rather
than modular symbols only.

For positive integers M,N such that M |N, let m, k be non-negative integers such
that m ≥ k − 2 ≥ 0 and let χ be a Dirichlet character modulo N. First, for each
f ∈ Sk(M) = {holomorphic cusp forms of weight k and level M} we denote by rf

the map which sends γ ∈ Γ0(M), the Hecke congruence group of level M , to the
polynomial function:

rf (γ)(z) :=
∫ γ−1i∞

i∞
f(w)(w − z)k−2dw.

We then consider the functions G∗ on the upper-half plane H of polynomial growth
at the cusps such that for f ∈ Sk(M) and G ∈ Mm(N, χ) = {modular forms (not
necessarily analytic) of weight m for level N and associated character χ} we have:

(G∗|m−(k−2),χγ)(z) = G∗(z) + rf (γ)(z)G(z)
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or, in a more compact notation,

G∗|m−(k−2),χ(γ − 1) = rf (γ) ·G for all γ ∈ Γ0(N), z ∈ H. (1)

As usual the ‘slash’ operator |n,χ is defined by the formula

Q|n,χ( ∗ ∗
c d

))(z) := χ̄(( ∗ ∗
c d

))Q(γz)(cz + d)−n det(( ∗ ∗
c d

))n/2

and when χ is trivial we write |n. Each of these functions can be expressed essentially
as a sum of Poincaré series shifted by a modular symbol (cf. [G1]).

In this work, we introduce Hecke operators on series formed with modular symbols
which are natural with respect to the structure of the spaces these functions comprise
and we study their effect on several associated objects.

In section 2 we view series formed with modular symbols as a kind of generalized
modular integral and we apply Knopp’s Hecke operators for modular integrals, de-
noted by Tp with (p,N) = 1, to them. For holomorphic series formed with modular
symbols G∗ that vanish at the cusps, we describe the effect of the operators Tp on a
certain family of polynomials and demonstrate a relation with values of L-functions of
G∗. This is analogous to the relation of the period polynomial to values of L-functions
of the usual cusp forms.

In sections 3 and 4 the action of the Hecke operators on non-holomorphic Eisenstein
series formed with modular symbols, i.e.

E∗(z, s; f) = E∗(z, s) :=
∑

τ∈Γ∞\Γ
rf (τ)(z)Im(τz)s,

is examined in detail. A description of the basic properties of these functions (for
f ∈ S2(M) and holomorphic), including their meromorphic continuation, functional
equation, poles and residues, was initiated in [G1], and completed by the second
author in [O’S1] using a generalization of Selberg’s method for the analytic contin-
uation of Eisenstein series. These results have been used by Goldfeld to prove some
first theorems on the distribution of modular symbols (cf. [G2]). In this case, the
effect of the Hecke operators Uq with q | N , (in the notation of Atkin and Lehner
[AL]) on E∗ yields an interesting relation involving Rankin-Selberg L-functions when
we consider the action on the residues of the poles of E∗. As an application of this
an orthonormal basis for the spaces of oldforms and newforms coming from a single
Maass form on the full modular group is constructed.

In Section 5, some alternative Hecke operators are given which are compatible
with different definitions of the space in which our functions G∗ can be thought of as
belonging. Although these operators do not behave as naturally with respect to the
analogue of the period polynomial as the first one discussed here, they are, in some
cases, better suited to carrying over to G∗ the eigenproperties of the cusp form to
which the modular symbol is associated. Thus, depending on the applications, either
type of Hecke operator may be used.

Finally, we should remark that our work can also be understood in terms of a more
general project attempting a study of objects associated to modular forms, such as L-
functions, periods etc., using the action of the relevant group by |k for varying index k
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and, consequently, the corresponding cohomology. This viewpoint has already been
applied by the first author in the investigation of the derivatives of L-functions of
(usual) cusp forms (cf. [D1], [D2]) and earlier, by other authors, in the study of
modular integrals, rational period functions etc. (cf. [K], [A], [CZ], [G3] etc.)

The authors would like to thank D. Goldfeld, S. Wolpert and D. Zagier for their
helpful suggestions and advice in the writing of this paper. This work was completed
while the first author was a guest at Max-Planck-Institut für Mathematik in Bonn in
the framework of the program Training and Mobility of Researchers.

2. Hecke operators and L-functions.

We recall that a rational period function of weight k > 0 for SL2(Z) is a rational
function q such that:

q + q|kT = q + q|kU + q|kU2 = 0 where T = ( 0 −1

1 0
), U = ( 1 −1

1 0
).

Also, a modular integral of weight k is a meromorphic function F on the upper-half
plane H of polynomial growth at the cusps such that: F |kS = F and F |kT = F + q

for q a rational function and S := ( 1 1

0 1
). It is easy to see that q will then be a period

function.
Because of (1), in the special case that N = 1 the functions defined in the Intro-

duction can be considered as modular integrals associated to period functions which
are no longer rational but rather smooth with polynomial growth at the cusps. Mo-
tivated by this observation we study first the effect Knopp’s Hecke operators for
modular integrals (see [K]) have on our functions.

With the notation used in the Introduction, we set n := m− (k − 2) and consider
the space N of smooth functions on H with polynomial growth at the cusps. We let
Γ0(N) act on N from the right by |n and we denote by d the coboundary operator
from the 0-cochains to the 1-cochains (with respect to the ‘bar’-resolution). Knopp’s
Hecke operators on modular integrals Tp for (p,N) = 1, in the formulation of [CZ],
is given by the element of Z[Mp] (where Ml := {M ∈ M2(Z); det(M) = l}):

Tp :=
∑

M∈∆p

M where∆p := {( a b

0 d
) : ad = p, a > 0, 0 ≤ b < d}.

Thus we set:
TpG

∗ := G∗|nTp.

Since dTp = Tpd, where the Tp on the right denotes the Hecke operator on 1-cocycles
(cf. [S], Ch. 8), we have

(TpG
∗)|n(γ − 1) = Tp(rf ·G)(γ) for all γ ∈ Γ0(N).

We return to the case N = 1. Since rf (S) · G = 0, the fact that rf (γ) · G ∈ N
satisfies a 1-cocycle condition is equivalent to rf := rf (T ) ·G ∈ N being annihilated
by T + 1 and U2 + U + 1. Using Knopp’s Hecke operators as described in [CZ], we
can give an explicit formula for the period function associated to TpG

∗ in terms of
rf .
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Proposition 1 [CZ]. Let Tp and Ml be as above and let J denote the right ideal
(1+T )Z[M1]+(1+U +U2)Z[M1] of Z[M1]. Then, there are Xp, Yp ∈ Z[Mp] such that
(i)XpJ ⊂ JZ[Mp] and (ii)Tp(T − 1) = (T − 1)Xp + (S − 1)Yp. Moreover an example

of such an Xp is given, namely Xp :=
∑

M∈M M where M = {
(

a b

c d

)
∈ Mp such that

a > |c|, d > |b|, bc ≤ 0, c = 0 =⇒ −d/2 < b ≤ d/2, and b = 0 =⇒ −a/2 < c ≤
a/2}.

In a manner completely analogous to the application of that theorem discussed in
[CZ], we have:

(TpG
∗)|n(T −1) = (G∗|nTp)|n(T −1) = G∗|n(T −1)|nXp +G∗|n(S−1)|nYp = rf |nXp

(since, as it is easy to see, G∗|nS = G∗) and because of part (i) of the theorem,
rf |nXp is a period function too.

We study next how these Hecke operators interact with the analogue of period
polynomials for those of our functions which are holomorphic and vanish at the cusps
(see [G1]). To do that we quickly recall the definition of the L-function associated to
series formed with modular symbols G∗ (see [G1]).

Let G∗ have a Fourier expansion (at i∞) of the form G∗(z) =
∑∞

n=1 a(n)e(nz). In
[G1] it is proven that

LG∗(s) :=
∞∑

n=0

a(n)
ns

converges absolutely for s in some right half-plane and that it can be expressed in
terms of the inverse Mellin transform:∫ ∞

0

G∗(iy)ys−1dy = Γ(s)(2π)−sLG∗(s).

The proof is identical with that of the case of cusp forms because the key property
used is the exponential decay at the cusps which holds also for G∗. This equation
enables us to extend LG∗ to an entire function. More generally, the L-function of
G∗ twisted by an exponential character can be expressed in terms of integrals of the
form

∫∞
x

G∗(iy)(y − x)s−1dy with x ∈ Q.
It is then natural to define the map sending an element γ of Γ0(N) to the polyno-

mial:

σ(γ) :=
∫ γ−1i∞

i∞
G∗(z)(z −X)n−2dz

where n = m− (k − 2) ≥ 2. When N = 1, the coefficients of σ(T ) are explicit linear
combinations of values of LG∗(s) inside the critical strip (as is the case for the period
polynomial as well).

Proposition 2. Let G∗ be a holomorphic function on H which vanishes at the cusps
and satisfies equation (1) for some f ∈ Sk(1) and G ∈ Sm(1). Then,

σ(T ) =
n−2∑

j=0

(
n− 2

j

)
(−1)j−1j!(

i

2π
)j+1LG∗(j + 1)Xn−2−j .
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Proof.

By the definition (and binomial expansion):

σ(T ) =
n−2∑

j=0

(
n− 2

j

)
(−1)j(

∫ 0

i∞
G∗(z)zjdz)Xn−2−j .

The result is obtained by this formula and the expression of L∗G in terms of the inverse
Mellin transform for s = j + 1. ¥

More generally, the coefficients of σ(g), for any g ∈ Γ0(N) are linear combinations
of values of the twisted (by an exponential) L-function. The map satisfies a 1-cocycle
condition with respect to the usual action |2−n of Γ0(N) on the polynomials of degree
≤ n− 2 “modulo linear combinations of products of periods of f and G”. We recall
that the period of a weight k cusp form g for Γ0(N) is an integral

∫ i∞
0

g(z)zjdz for
j ∈ {0, . . . , k − 2}.

Specifically,

Proposition 3. For all γ1, γ2 ∈ Γ0(N) we have:

σ(γ2γ1) = σ(γ2)|2−nγ1 + σ(γ1) + (
∫ γ−1

2 i∞

i∞
rf (γ−1

1 )(z)G(z)(z −X)n−2dz)|2−nγ1.

Proof.

By the equality (z − γ1X)j(γ1, X) = (γ−1
1 z − X)j(γ−1

1 , z) and equality (1), we
obtain:

σ(γ2)|2−nγ1 =
∫ γ−1

2 i∞

i∞
G∗(z)(z − γ1X)n−2j(γ1, X)n−2dz

=
∫ γ−1

2 i∞

i∞
G∗(γ−1

1 z)(γ−1
1 z −X)n−2d(γ−1

1 z)

−
∫ γ−1

2 i∞

i∞
rf (γ−1

1 )(z)G(z)(γ−1
1 z −X)n−2j(γ−1

1 , z)n−2dz

By a change of variables, we observe that the first integral equals σ(γ2γ1) − σ(γ1)
and this completes the proof. ¥

This formula implies that σ is determined by its values at the generators of Γ0(N)
and by the (usual) periods of G and f . In particular, for N = 1, it is determined
(“modulo products of usual periods”) by its value at T , (since σ(( 1 1

0 1
)) = 0), so this

value can be considered as the analogue of the period polynomial.
In order to characterize the effect of the Hecke operator of G∗ on the associated

map σ, we need a easy generalization of Proposition 1 for Γ0(N) (N ≥ 1).
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Lemma 4. Let {γ1, . . . , γr} be a set of generators of Γ0(N). For every γ ∈ Γ0(N)
there are X1, . . . , Xr ∈ Z[Mp] such that

Tp(γ − 1) = (γ1 − 1)X1 + · · ·+ (γr − 1)Xr.

Proof.

For each M ∈ ∆p, there is a γM ∈ Γ0(N) and a (unique) M̂ ∈ ∆p such that
MγM̂−1 = γM (cf. [S], Prop. 3.36). Therefore, Tp(γ − 1) =

∑
M (γMM̂ − M) =∑

M (γM − 1)M̂. The lemma follows by this equality and the observation that, for all
γ ∈ Γ0(N), γ − 1 ∈ (γ1 − 1)Z[M1] + · · ·+ (γr − 1)Z[M1]. (If γ satisfies this property,
then for i = 1, . . . , r, γiγ−1 = (γi−1)γ+(γ−1), γ−1

i γ−1 = (γi−1)(−γ−1
i γ)+(γ−1)

and the fact follows by induction.) ¥
Theorem 5. With the above notation, let G∗ be a holomorphic function on H which
vanishes at the cusps and satisfies equation (1) for some f ∈ Sk(M) and G ∈ Sm(N).
Then, for all γ ∈ Γ0(N) and p such that (p,N) = 1 we have,

σTpG∗(γ) =
∑

i

σG∗(γi)|2−nXi + P

where n := m − (k − 2) and P is a polynomial of degree ≤ n − 2 whose coefficients
are rational combinations of products of periods of G and f.

Proof.

We set sG∗(τ) =
∫ i∞

τ
G∗(z)(z − τ)n−2dz. Then, we have

(sG∗ |2−n(γ − 1))(τ) =
∫ γ(γ−1i∞)

γτ

G∗(z)(z − γτ)n−2j(γ, τ)n−2dz − sG∗(τ),

and this, by a change of variables in the first integral, equals
∫ γ−1(i∞)

τ

(G∗|nγ)(z)(z − τ)n−2dz −
∫ i∞

τ

G∗(z)(z − τ)n−2dz

= σG∗(γ) +
∫ γ−1(i∞)

τ

rf (γ)(z)G(z)(z − τ)n−2dz

because (γz − γτ)j(γ, z)j(γ, τ) = z − τ. Since Tp(rf · G)(γ) is the period function
corresponding to TpG

∗, this also implies:

(sTpG∗ |2−n(γ − 1))(τ) = σTpG∗(γ) +
∫ γ−1(i∞)

τ

Tp(rf ·G)(γ)(z)(z − τ)n−2dz. (2)

Moreover, by Lemma 4, we have that

Tp(rf G)(γ) = (TpG
∗)|n(γ − 1) = G∗|nTp|n(γ − 1)

=
∑

i

G∗|n((γi − 1) ·Xi) =
∑

i

(rf (γi) ·G)|nXi.

6



Hence equality (2) can be written in the form:

(sTpG∗ |2−n(γ − 1))(τ) = σTpG∗(γ) +
∑

i

∫ γ−1(i∞)

τ

((rf (γi) ·G)|nXi)(z)(z − τ)n−2dz.

By definition,

sTpG∗(τ) = pn/2

p∑

i=0

∫ i∞

τ

G∗(αiz)j(αi, z)−n(z − τ)n−2dz.

However, for all M ∈ GL2(R),

(z −Mτ)j(M, τ) = det(M)(M−1z − τ)j(M,M−1z)−1 and d(M−1z) =
det(M−1)dz

j(M−1, z)2
(3)

so, by a change of variables in each of the integrals, we eventually see that,

sTpG∗(τ) = pn/2−1−(n−2)

p∑

i=0

∫ i∞

αiτ

G∗(z)j(αi, z)n−2(z − αiτ)n−2dz = (sG∗ |2−nTp)(τ).

Putting all these equalities together, we obtain:

σTpG∗(γ) = (sTpG∗ |2−n(γ − 1))(τ)−
∑

i

∫ γ−1i∞

τ

((rf (γi) ·G)|nXi)(z)(z − τ)n−2dz

= (sG∗ |2−nTp(γ − 1))(τ)−
∑

i

∫ γ−1(i∞)

τ

((rf (γi) ·G)|nXi)(z)(z − τ)n−2dz.

Using Lemma 4 once more, the last sum becomes:

r∑

i=1

(sG∗ |2−n(γi − 1)|2−nXi)(τ)−
∑

i

∫ γ−1i∞

τ

((rf (γi) ·G)|nXi)(z)(z − τ)n−2dz or

r∑

i=1

σG∗(γi)|2−nXi +
∑

i

(
∫ γ−1

i i∞

τ

rf (γi)(z)G(z)(z − τ)n−2dz)|2−nXi

−
∑

i

∫ γ−1(i∞)

τ

((rf (γi) ·G)|nXi)(z)(z − τ)n−2dz (4)

Now we observe that for each i, if Xi =
∑

M ∈ Z[Mp], then

∫ γ−1(i∞)

τ

((rf (γi) ·G)|nXi)(z)(z − τ)n−2dz =

∑

M

∫ γ−1i∞

τ

rf (γi)(Mz)G(Mz)(z − τ)n−2j(M, z)−np
n
2 dz.
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Because of (3), this equals,

∑

M

p1−n
2

∫ γ−1i∞

τ

rf (γi)(Mz)G(Mz)(Mz −Mτ)n−2j(M, τ)n−2d(Mz)

or, by a change of variables,

∑

M

(
∫ Mγ−1i∞

τ

rf (γi)(z)G(z)(z − τ)n−2dz)|2−nM.

Therefore sum (4) equals,

r∑

i=1

σG∗(γi)|2−nXi +
r∑

i=1

∑

M

(
∫ γ−1

i i∞

Mγ−1i∞
rf (γi)(z)G(z)(z − τ)n−2dz)|2−nM.

Since rf (γ)(z)G(z) =
∑k−2

j=0

(
k−2

j

)
(−1)jzjG(z)

∫ γ−1i∞
i∞ f(w)wk−2−jdw the double

sum is a polynomial whose coefficients are linear combinations of products of the
form: (

∫ β

α
G(z)zidz)(

∫ γ−1i∞
i∞ f(w)zjdz) with 0 ≤ i ≤ n − 2 + k − 2 = m − 2 and

0 ≤ j ≤ k − 2 and α, β ∈ Q. Such integrals can be written as rational linear combi-
nations of periods (cf. [M]). From this the desired result follows. ¥
Corollary 6. Let f ∈ Sk(SL2(Z)) and G ∈ Sm(SL2(Z)). Then we have,

σTpG∗(T ) = σG∗(T )|nXp + P

where n := m − (k − 2) and P is a polynomial of degree ≤ n − 2 whose coefficients
are rational combinations of products of periods of G and f.

Proof.

Since σG∗(S) = 0, this follows from the proof of Theorem 5 (for γ = T ) where
rather than using Lemma 4 we use Proposition 1. ¥

The same results hold for primes p for p | N with Tp replaced by the operator
Up :=

∑p−1
i=0 ( 1 i

0 p
). The reason for this is that (as in the case of Tp) for all γ ∈ Γ0(N)

and i = 0, . . . , p − 1, there is a unique j ∈ {0, . . . , p − 1}, such that ( 1 i

0 p
)γ( 1 j

0 p
)−1 ∈

Γ0(N).

3. Eisenstein series formed with modular symbols and the operators Tp.

Let Γ = Γ0(N) be the Hecke congruence group of level N . In [G1], [O’S] the
non-holomorphic Eisenstein series

E∗(z, s; f) = E∗(z, s) :=
∑

τ∈Γ∞\Γ
rf (τ)(z)Im(τz)s (5)
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is studied in the special case that f is a weight 2 holomorphic cusp form. In that case
rf (τ)(z) = rf (τ) = 〈 τ, f 〉/(2πi) is a modular symbol. As can be readily verified, for
a fixed s, E∗(·, s) satisfies (1) with χ = 1, m = k − 2 = 0 and G(z) = E(z, s) =∑

τ∈Γ∞\Γ Im(τz)s, the usual automorphic non-holomorphic Eisenstein series. The
series (5) converges to a holomorphic function of s for Re(s) > 2. As a function
of z it is an eigenfunction of the hyperbolic Laplacian ∆ = −y2( ∂2

∂x2 + ∂2

∂y2 ) and is
real-analytic. In [O’S2] it is shown that E∗ has a meromorphic continuation to the
entire s-plane and a functional equation relating values at s to those at 1 − s. In
[O’S1] and work to appear it is also shown that E∗ has simple poles on the critical
line Re(s) = 1/2.

In this section we examine the effect the Hecke operators have on such series and
derive a relation for the values of certain convolution L-functions at special points.
We fix, once and for all, a weight 2 holomorphic newform f(z) for Γ. This implies
that f is an eigenfunction of the Hecke operators Tp for primes p - N and Uq for
primes q | N . If f has Fourier expansion

f(z) =
∞∑

n=1

a(n)e(nz) (6)

then we may normalize f to have a(1) = 1. In that case Tpf = a(p)f and Uqf = a(q)f .
As is well known, the coefficients a(n) have the following multiplicative properties:

a(pr)a(p) = a(pr+1) + a(pr−1)p if p - N,

a(pr) = a(p)r if p | N,

and a(m)a(n) = a(mn) if (m, n) = 1.

Thus in particular we have the formula

a(pn) = a(p)a(n)−
{

a(n/p)p if p | n and p - N
0 if p - n or p | N . (7)

Also it is known that a(p) = 0 if p2 | N and a(p) = ±1 if p | N and p2 - N . We next
set

Ff (z) = F (z) =
∫ z

i∞
f(w) dw,

the antiderivative of f . The Hecke operators act naturally on the ‘automorphic part’
of our function

Q∗(z, s; f) =
∑

τ∈Γ∞\Γ
F (τz)Im(τz)s = E∗(z, s) + F (z)E(z, s),

where it is clear that Q∗ is automorphic with weight zero. To prove the proposition
describing the effect of Tp on Q∗, we need the following two lemmas.

9



Lemma 7. For each prime p such that p - N we have TpF := F |0Tp = a(p)F .

Proof.

TpF (z) =
∑

ρ∈∆p

∫ ρz

i∞
f(w) dw =

∑
ρ

∫ ρz

ρi∞
f(w) dw

=
∑

ρ

∫ z

i∞
f(ρw) dρw =

∫ z

i∞
[Tpf(w)] dw = a(p)F (z). ¥

Note that if q | N then UqF := F |0Uq = a(q)F by the same proof.

Lemma 8. Let HN be a set of representatives of Γ∞\Γ0(N). Then, for each prime
p with (N, p) = 1 we have the equality

⋃

ρ∈∆p

τ∈HN

Γ∞τρ =
⋃

ρ∈∆p

τ∈HN

Γ∞ρτ

where the cosets on the left and right are disjoint.

Proof.

We first prove that
⋃

ρ∈∆p

τ∈HN

Γ∞ρτ ⊂ ⋃
ρ∈∆p

τ∈HN

Γ∞τρ. For each τ ∈ Γ0(N) there

is a unique ρ̃ ∈ ∆p such that ρτ ρ̃−1 ∈ Γ0(N) (see [S], Prop. 3.36). Then, ρτ ρ̃−1

will equal Snτ ′ for some n ∈ Z, τ ′ ∈ HN , where S is the generator of Γ∞, i.e.
Γ∞ρτ ⊂ ⋃

ρ∈∆p

τ∈HN

Γ∞τρ.

Conversely, let τ ∈ HN and ρ ∈ ∆p. Then there is an n ∈ Z and ρ̃ ∈ ∆p such that
ρ̃−1Snτρ ∈ Γ0(N). This n can be found as follows. If p | c, then

(
1 0
0 p

)−1 (
a b
c d

) (
1 i
0 p

)
=

(
a ai + bp
c
p

c
p i + d

)
∈ Γ0(N) and

(
p 0
0 1

)−1 (
1 n
0 1

)(
a b
c d

) (
p 0
0 1

)
=

(
a + nc b+nd

p

pc d

)
∈ Γ0(N)

for any n ∈ Z such that p|(b + nd). If p - c, then
(

p 0
0 1

)−1 (
1 n
0 1

)(
a b
c d

) (
1 i
0 p

)
=

(
a+nc

p
a+nc

p i + b + nd

c ci + dp

)
∈ Γ0(N)

for n with p|a + nc and
(

1 0
0 p

)−1 (
a b
c d

) (
p 0
0 1

)
=

(
pa b
p d

p

)
∈ Γ0(N), if p|d, or

(
p 0
0 1

)−1 (
1 n
0 1

)(
a b
c d

) (
p 0
0 1

)
=

(
a + nc b+nd

p i + b + nd

pc d

)
∈ Γ0(N)

for any n with p|b + nd if p - d. Hence, Γ∞τρ ⊂ ⋃
ρ∈∆p

τ∈HN

Γ∞ρτ. ¥

We are now ready to prove
10



Proposition 9. Set fp(z) := pf(pz) then for each prime p not dividing N

TpQ
∗(z, s) = a(p)p−sQ∗(z, s) + (ps − p−s)Q∗(z, s; fp).

Proof.

TpQ
∗(z, s) =

∑

ρ∈∆p

∑

τ∈Γ∞\Γ
F (τρz) Im(τρz)s =

∑
ρ

∑
τ

F (ρτz) Im(ρτz)s

Note that Im(ρz) = 1
p Im(z) for each ρ = ( 1 i

0 p
) and Im(( p 0

0 1
)z) = p Im(z). So we

obtain

TpQ
∗(z, s) = ps

∑
τ

(
F (pτz) + p−2s

(∑
ρ

F (ρτz)− F (pτz)

))
Im(τz)s

= ps
∑

τ

(
F (pτz)

(
1− p−2s

)
+ p−2s

∑
ρ

F (ρτz)

)
Im(τz)s

= ps
∑

τ

(
F (pτz)

(
1− p−2s

)
+ p−2sa(p)F (τz)

)
Im(τz)s

= (ps − p−s)
∑

τ

F (pτz)Im(τz)s + a(p)p−sQ∗(z, s).

Noting that ∫ z

i∞
pf(pw) dw =

∫ pz

i∞
f(w) dw = F (pz)

completes the proof. ¥

As we remarked earlier E∗ has simple poles at certain points s′ on the critical line
Re(s) = 1/2. We wish to examine the effect of the Hecke operators on the residues
of these poles.

Let L2(Γ\H) denote the space of automorphic (weight zero) functions φ on Γ\H
with finite norm 〈φ, φ〉N where the Petersson inner product is given by

〈φ, ψ〉N =
∫

Γ0(N)\H
φ(z)ψ(z) dµz,

for z = x+ iy and dµz = dxdy/y2. The Laplacian induces the spectral decomposition

L2(Γ\H) = C⊕ C(Γ\H)⊕ E(Γ\H)

where C is the space of constant functions, C the space of cusp forms and E the space
of Eisenstein series. Let ηj , for j = 0, 1, 2 . . . , be an orthonormal basis for C⊕C(Γ\H)

11



with ∆ηj = λjηj and 0 = λ0 < λ1 ≤ λ2 ≤ . . . . We may assume that the Maass cusp
forms ηj with j ≥ 1 satisfy Tnηj(z) = λj(n)ηj(z) for all n with (n,N) = 1. These
Maass forms have Fourier expansion

ηj(z) =
∑

n6=0

bj(n)Ws(nz) (8)

where W is the Whittaker function, see [Iw]. Similarly to (7) we have, for p prime
not dividing N ,

bj(pn)p = λj(p)bj(n)−
{

bj(n/p) if p | n
0 if p - n

. (9)

If, for example, ηj is a newform with bj(1) 6= 0 then λj(p)/p = bj(p)/bj(1).
In [O’S] it is shown that E∗(z, s) has simple poles at points sj satisfying sj(1−sj) =

λj . The residue at such a point s′ is given by

π
1
2−s′

4πi
Γ(s′ − 1/2)

∑

j:sj=s′
Lf⊗ηj (s

′)ηj(z), (10)

provided this is non-zero. For the remainder we may ignore the non-zero factor in
front of the sum. The convolution L-function with f and ηj as in (6) and (8) has
definition

Lf⊗ηj (s) =
∞∑

n=1

a(n)bj(n)
ns

.

Also known as Rankin-Selberg zeta functions they have been studied in connection
with the disappearance of Maass cusp forms ηj(z) for Γ0(N) when the group is subject
to a quasi-conformal deformation determined by a holomorphic cusp form f(z). In
[PS] it is shown that ηj is annihilated if and only if Lf⊗ηj (sj) 6= 0. In further work
[DI] and [L] prove that a high proportion of these zeta functions are non-zero at this
special point. If sj = 1/2+ itj , it is known that #{j : |tj | ≤ T} ∼ CT 2 for a constant
C and in [L] the estimate

#{j : |tj | ≤ T, Lf⊗ηj (sj) 6= 0} À T 2−ε

is proven.
These results indicate that Maass cusp forms are rarer than previously thought.

It also shows that E∗ has infinitely many poles on the critical line. Thus the value
of Lf⊗ηj (sj) appearing naturally in (10) is of great significance.

Continuing our analysis, since the difference E∗ − Q∗ = FE is holomorphic for
Re(s) ≥ 1/2 except at s = 1 we can work instead with Q∗. We see that the operators
Tp act on Ress=sj Q∗(z, s) in two ways, directly on the Maass forms and also on Q∗:

Tp Res
s=s′

Q∗(z, s) = Res
s=s′

TpQ
∗(z, s). (11)

12



Thus, for (p,N) = 1,

∑

j:sj=s′
Lf⊗ηj

(s′)λj(p)ηj(z) = a(p)p−s′
∑

j:sj=s′
Lf⊗ηj

(s′)ηj(z)

+ (ps′ − p−s′)
∑

j:sj=s′
Lfp⊗ηj (s

′)ηj(z),

implying that

(λj(p)− a(p)p−sj )Lf⊗ηj
(sj) = (psj − p−sj )Lfp⊗ηj

(sj).

This formula is actually true for all s not just s = sj as the next proposition shows.

Proposition 10. For any Maass form ηj as above and any s ∈ C we have

(λj(p)− a(p)p−s)Lf⊗ηj (s) = (ps − p−s)Lfp⊗ηj (s)

for fp(z) = pf(pz) and (p,N) = 1.

Proof.

Since

fp(z) =
∞∑

n=1

pa(n) e(pnz) =
∑

n:p|n
pa(n/p) e(nz),

we obtain

Lfp⊗ηj (s) = p−s+1
∞∑

n=1

a(n)bj(pn)
ns

= p−s

(
λj(p)Lf⊗ηj (s)− p−s

∞∑
n=1

a(pn)bj(n)
ns

)
,

using the relation (9) and the fact that λj(p) is always real. Next, with relation (7),

∞∑
n=1

a(pn)bj(n)
ns

= a(p)Lf⊗ηj (s)− p
∑

n:p|n

a(n/p)bj(n)
ns

= a(p)Lf⊗ηj (s)− p−s+1
∞∑

n=1

a(n)bj(pn)
ns

= a(p)Lf⊗ηj (s)− Lfp⊗ηj (s).

Hence

Lfp⊗ηj (s) = p−s
(
λj(p)Lf⊗ηj (s)− p−s

(
a(p)Lf⊗ηj (s)− Lfp⊗ηj (s)

))

= p−sλj(p)Lf⊗ηj (s)− p−2sa(p)Lf⊗ηj (s) + p−2sLfp⊗ηj (s)
13



completing the proof. ¥

So, the relation between the residues of TpQ
∗ and Q∗ we deduced from Proposition

9 reflects, in reality, a more global feature of the associated objects. On the other
hand, the effect of the operators Up with p | N on our series yields a more interesting
relation among the convolution L-functions.

4. Applying the Hecke operators Up.

We have been working with the Hecke operators Tp for p prime and not dividing the
level N . We restrict our attention for a moment to the λj-eigenspace of ∆ contained
in C(Γ0(N)\H). This space can be decomposed into the space of newforms and the
space of oldforms (cf. [AL],[Iw]). If η(z) is a newform then as well as being an
eigenfunction of the operators Tp for p - N it is also automatically an eigenfunction
of each Up for p | N . For our orthonormal family each ηj may be chosen to be a
newform or an oldform but we shall not need this assumption.

The following is the analogue of Lemma 8 of the previous section.

Lemma 11. Let ∆′
p = ∆p − {

(
p 0
0 1

)
}. For each prime p with p2 | N we have the

equality ⋃

ρ∈∆′p
τ∈HN

Γ∞τρ =
⋃

ρ∈∆′p
γ∈HN/p

Γ∞ργ

where the cosets on the left and right are disjoint. If the prime p divides N and p2 - N
then we have ⋃

ρ∈∆′p
τ∈HN

Γ∞τρ ∪
⋃

τ∈HN

Γ∞τwp =
⋃

ρ∈∆′p
γ∈HN/p

Γ∞ργ

where again the unions are disjoint and wp is any matrix with determinant p and of

the form
(

pa 1
Nc p

)
.

Proof.

We shall use Lemma 5 from [AL]: suppose the prime p divides N then let

Γ0(N/p, p) =
{(

a b
c d

)
∈ Γ0(N/p) : p | b

}
.

If p | N
p then the matrices Sj with 0 ≤ j ≤ p − 1 form a complete set of (disjoint)

right coset representatives for Γ0(N/p, p) in Γ0(N/p). Further, if p - N/p we need

the extra coset representative
(

ap 1
cN/p 1

)
where a and c are integers satisfying the

14



relation ap− cN/p = 1. Denote this set of coset representatives Φp. Thus(
1 0
0 p

)
Γ0(N/p) =

(
1 0
0 p

) ⋃

α∈Φp

Γ0(N/p, p)α =

(
1 0
0 p

) ⋃

α∈Φp

(
1 0
0 p

)−1

Γ0(N)
(

1 0
0 p

)
α

=
⋃

α∈Φp

Γ0(N)
(

1 0
0 p

)
α =

⋃

ρ∈∆′p

Γ0(N)ρ ∪ Γ0(N)wp

where the term containing wp is included in the last line only if p2 - N .
Now (

1 0
0 p

)
Γ0(N/p) =

(
1 0
0 p

)(
1 j
0 1

)
Γ0(N/p) =

(
1 j
0 p

)
Γ0(N/p).

Hence, ⋃

ρ∈∆′p

ρΓ0(N/p) =
⋃

ρ∈∆′p
γ∈HN/p

ρΓ∞γ =
⋃

ρ∈∆′p
γ∈HN/p

Γ∞ργ

where the cosets in the last union are distinct but the cosets on the first one have
multiplicity p. Therefore (

1 0
0 p

)
Γ0(N/p) =

⋃

ρ∈∆′p
γ∈HN/p

Γ∞ργ

and we have completed the proof. ¥

To keep track of the level we will write Q∗
M (z, s) =

∑
τ∈Γ∞\Γ0(M) F (τz)Im(τz)s.

Proposition 12. For each prime p dividing N ,
UpQ

∗
N (z, s) = a(p)p−sQ∗

N/p(z, s)−Q∗N (wpz, s)

where the term containing wp is included only if p2 - N .

Proof.

By definition

UpQ
∗
N (z, s) =

∑

ρ∈∆′p

∑

τ∈HN

F (τρz) Im(τρz)s

=
∑

ρ∈∆′p

∑

γ∈HN/p

F (ργz) Im(ργz)s −
∑

τ∈HN

F (τwpz) Im(τwpz)s

=
∑

γ∈HN/p

1
ps

Im(γz)s
∑

ρ∈∆′p

F (ργz)−Q∗
N (wpz, s)

=
∑

γ∈HN/p

1
ps

Im(γz)sa(p)F (γz)−Q∗N (wpz, s)

= a(p)p−sQ∗N/p(z, s)−Q∗
N (wpz, s)
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as in the statement of the proposition. ¥

Using relation (11) as in the previous section we obtain the following. Let V M
λ ⊂

C(Γ0(M)\H) denote the λ-eigenspace of the Laplacian ∆ and set BM
λ to be any

orthonormal basis (w.r.t 〈 , 〉M ), of this space. Then we have

Proposition 13. Suppose the prime p divides N . Set Wpφ(z) := φ(wpz) and define
Ũp to be Up if p2 | N or Up + Wp if p2 - N . Then

∑

φ∈BN
λ

Lf⊗φ(sλ)Ũpφ(z) =
a(p)
psλ

∑

ψ∈B
N/p
λ

Lf⊗ψ(sλ)ψ(z)

where λ = sλ(1− sλ).

This formula may be verified in simple cases and, as before, it seems to be true for
all s ∈ C not just s = sλ. Proving this seems difficult though. In another direction it
should also be possible to prove a completely holomorphic version of this proposition
with BM

λ replaced by an orthonormal basis for the holomorphic cusp forms Sk(M).
We conclude this section by mentioning an application of our last Proposition.

Suppose that φ(z) ∈ C(Γ0(1)\H) is a Maass cusp form with ∆φ = λφ. Let W pk

be the vector space generated by φ(z) and its ‘descendants’, φpi(z) := φ(piz) for
i = 1, 2, . . . , k. Note that φpi ∈ C(Γ0(pi)\H) and ∆φpi = λφpi .

To make the presentation easier we re-normalize our inner product and define

〈ξ1, ξ2〉 = [Γ0(1) : Γ0(M)]−1〈ξ1, ξ2〉M ,

where it is understood that if ξi ∈ C(Γ0(li)\H) for i = 1, 2 then li | M . Let us
assume that 〈φ, φ〉 = 1 and that Tpφ = λpφ. It should be noted that the Maass forms
φpi do not form an orthonormal basis for W pk

, for example it may be shown that
〈φ, φp〉 = λp/(p + 1).

We construct an orthonormal basis {ψ0, ψ1, . . . , ψk} for W pk

using the Gram-
Schmidt process where at each stage {ψ0, ψ1, . . . , ψi} is a basis for W pi

. Now Propo-
sition 13 implies that

Lf⊗ψi(sλ)Upψi(z) =
a(p)
psλ

Lf⊗ψi−1(sλ)ψi−1(z)

for i ≥ 3. Combining this with the fact that Upφpi = pφpi−1 for i ≥ 1 and a few other
results we deduce

Theorem 14. Let α = ((p + 1)2 − λ2
p)
−1/2 and β = (p + 1)1/2(p − 1)−1/2α where

α, β ∈ R, then

ψ0 = φ,

ψ1 = α(−λpφ + (p + 1)φp)

and ψi = β(φpi−2 − λpφpi−1 + pφpi)
16



for i ≥ 2, gives an orthonormal basis {ψ0, ψ1, . . . , ψk} for the space spanned by
φ, φp, . . . , φpk where φ is a Maass cusp form for the full modular group and φpi(z) =
φ(piz).

We may also write W pk

= Wold ⊕Wnew. The space of oldforms, Wold, is spanned
by φpi with 1 ≤ i ≤ k and Wnew, the space of newforms, is the orthogonal complement
of Wold. We see that φi ∈ Wold for i ≥ 3. If we rearrange terms and set

ξ0 = β(pφ− λpφp + φp2),
ξ1 = φp

and ξ2 = α(−λpφp + (p + 1)φp2)

then it may be shown that {ξ0} and {ξ1, ξ2, ψ3, . . . , ψk} are orthonormal bases for
Wnew and Wold respectively when k ≥ 2.

Only brief sketches of the proofs have been given above. The second author hopes
to return to these topics in a future work.

5. Other Hecke operators.

An alternative way to define the space of functions G∗ (and the one appearing
in [G1]) is to fix f ∈ Sk(M) and G ∈ Mm(N, χ) and to consider the vector space
M(f,G) of functions G∗ : H → C of polynomial growth at the cusps such that for
some c ∈ C we have G∗|m−(k−2)(γ − 1) = c · rf (γ) ·G for all γ ∈ Γ0(N).

If we fix only f ∈ Sk(M), we can set M(f) = {G∗ : H → C of polynomial growth at
the cusps such that for some G ∈ Mm(N,χ) we have: G∗|m−(k−2)(γ − 1) = rf (γ) ·G
for all γ ∈ Γ0(N)}. In an analogous manner, we can define M(G) for a fixed G ∈
Mm(N, χ).

It is possible to define Hecke operators on M(f, G), M(f), M(G) which are com-
patible with each other. To this end, we prove first the following

Proposition 15. For non-zero f ∈ Sk(M), G ∈ Mm(N) we have:

M(f) ∼= Mm(N)⊕Mm−(k−2)(N),

M(G) ∼= Sk(M)⊕Mm−(k−2)(N) and

M(f, G) ∼= C⊕Mm−(k−2)(N).

Proof.

Suppose that G∗|m−(k−2)(γ − 1) = rf (γ)G for some G ∈ Mm(N).Then, if f̃(z)
denotes the Eichler integral

∫ z

i∞ f(w)(w−z)k−2dw, there is a g ∈ Mm−(k−2)(N) such
that G∗ = f̃ · G + g because f̃ · G satisfies the above equation too, so G∗ − f̃ · G ∈
Mm−(k−2)(N). This expression is unique because if G∗ = f̃(z)G′(z) + g′(z) for some
other G′, g′ then, f̃(G′ −G) = g − g′ and hence

(f̃(G′ −G))|m−(k−2)(γ − 1) = (g − g′)|m−(k−2)(γ − 1)
17



for all γ ∈ Γ0(N). The equality f̃ |m−(k−2)(γ − 1) = rf (γ) then implies that for all
z ∈ H, γ ∈ Γ0(N), we have rf (γ)(z)(G(z) − G′(z)) = 0. Now choose a z0 ∈ H such
that G(z0) − G′(z0) 6= 0 and a γ0 such that rf (γ0) 6= 0. (The existence of such a γ0

is guaranteed by the Eichler-Shimura isomorphism.) Then G−G′ does not vanish at
Slz0 (l = 0, . . . , k− 2) either, therefore rf (γ0) must vanish there, which is impossible
since rf (γ0) is a polynomial of degree at most k − 2.

Similarly, each element G∗of M(G) can be written uniquely in the form f̃(z)G(z)+
g(z) for some f ∈ Sk(M) and g ∈ Mm−(k−2)(N) and each element G∗ of M(f, G)
can be written uniquely in the form cf̃(z)G(z) + g(z) for some c ∈ C and g ∈
Mm−(k−2)(N). ¥

In view of this proposition, for any f ∈ Sk(M) and any p with p - N we can define
a Hecke operator Tp(f) : M(f) → M(f) by the formula

Tp(f)G∗ = f̃ · TpG + Tpg

for G∗ = f̃G + g. By Tp on the RHS we denote the usual Hecke operator on Mm(N)
or Mm−(k−2)(N) (according to which functions it is applied on). Obviously, Tp(f)G∗

belongs to M(f) satisfying the equation:

(Tp(f)G∗)|m−(k−2)(γ − 1) = rf (γ)TpG.

This map induces a graded morphism of degree 0 from ⊕f∈S2(M)M(f) to itself.
Similarly, for each G ∈ Mm(N), we can define a Hecke operator Tp(G) : M(G) →

M(G) by the formula
Tp(G)G∗ = ˜(Tpf) ·G + Tpg

for any p with (p,N) = 1 and with the analogous convention on the notation of the
usual Hecke operators as above. Thus Tp(G)G∗ ∈ M(G) and it satisfies the equation:
(Tp(G)G∗)|m−(k−2)(γ − 1) = rTpf (γ)G. This map induces a graded morphism of
degree 0 from ⊕G∈Mk(N)M(G) to itself.

Finally, we can set
Tp(f, G)G∗ = cf̃G + Tpg

for G∗(z) = cf̃(z)G(z) + g(z) ∈ M(f,G) and it is easy to see that Tp(f,G)G∗ will
belong to M(f, g) satisfying the same transformation law as G∗. Again, this map
induces a graded morphism of degree 0 from ⊕G∈Mk(N)

f∈S2(M)

M(f,G) to itself.

It can be seen directly from their definitions that the maps induced by Tp(f),
Tp(G) and Tp(f, G) commute with each other. The spaces we construct this way:

⊕f∈S2(M)M(f), ⊕G∈Mk(N)M(G), ⊕G∈Mk(N)
f∈S2(M)

M(f, G)

are isomorphic (but via isomorphisms which do not respect the grading of course).
As an example, the Eisenstein series E∗(z, s) of Section 3 is an element of M(f,E).

It may be expressed as

E∗(z, s) = Q∗(z, s)− f̃(z)E(z, s),
18



with Q∗(z, s) =
∑

τ∈Γ∞\Γ F (τz)Im(τz)s as before. So we have

Tp(f, E)E∗(z, s) = TpQ
∗(z, s)− f̃(z)E(z, s).

Therefore an immediate corollary of Proposition 9 is

Corollary 16. For p not dividing N ,

Tp(f,E)E∗(z, s) = a(p)p−s(E∗(z, s)− F (z)E(z, s))

+ (ps − p−s)(E∗(z, s; fp)− F (pz)E(z, s)) + F (z)E(z, s).

By comparison TpE(z, s) = (p1−s + ps)E(z, s).
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