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Abstract

Higher-order non-holomorphic Eisenstein series associated to a Fuchsian group Γ are defined by twist-
ing the series expansion for classical non-holomorphic Eisenstein series by powers of modular symbols.
Their functional identities include multiplicative and additive factors, making them distinct from classical
Eisenstein series. In this article we prove the meromorphic continuation of these series and establish their
functional equations which relate values at s and 1− s. In addition, we construct high rank vector bundles
V from certain unipotent representations π of Γ and show that higher-order non-holomorphic Eisenstein
series can be viewed as components of certain eigensections, E, of V . With this viewpoint the functional
identities of these higher-order series are formally identical to the classical case. Going further, we prove
bounds for the Fourier coefficients of the higher-order non-holomorphic Eisenstein series.

1 Introduction

Let Γ be any Fuchsian group of the first kind which acts on the hyperbolic upper half-space H such that
the quotient Γ\H has finite volume yet is non-compact. Following the notation from [11], let us fix repre-
sentatives for the finite number of Γ-inequivalent cusps, label them a, b, . . . , and use the scaling matrices
σa, σb, . . . to give local coordinates near these cusps. Define the subgroup Γa to be the elements of Γ which
fix the cusps equivalent to a. Let S2(Γ) be the space of holomorphic cusp forms of weight 2 with respect to
Γ. For f, g ∈ S2(Γ) and m,n > 0, we define, following [7], [8], and [17], the higher-order non-holomorphic
Eisenstein series associated to the forms f and g, character χ and cusp a by the series

Em,n
a (z, s; f, g, χ) =

∑

γ∈Γa\Γ
χ(γ)〈 γ, f 〉m〈 γ, g 〉nIm(σa

−1γz)s (1.1)

where the modular symbols are defined by

〈 γ, f 〉 =
∫ γz0

z0

f(w) dw, 〈 γ, g 〉 =
∫ γz0

z0

g(w) dw ; (1.2)

observe that the modular symbols are independent of z0 ∈ H by Cauchy’s theorem since f and g are holo-
morphic and weight 2. We will discuss the exact meaning of order in section 3.1. Throughout this article, we
will consider the forms f , g and character χ to be fixed, hence we will abbreviate the notation and just write
Em,n

a (z, s).

As will be shown, the series (1.1) converges absolutely for Re(s) > 1 and z ∈ H. One of the main results
of this article is to prove the meromorphic continuation of Em,n

a (z, s) to all s in C. The continuation of
(1.1) has already been addressed in [18] and [19] using perturbation theory. Our new proof continues the
extension of Selberg’s method [21] to higher-order forms that appears in [17], [12]. It has the advantage of
naturally giving strong bounds on both the Fourier coefficients of Em,n

a (z, s) and its growth in z. We require
these bounds for our demonstration of the functional equation, relating values of higher-order Eisenstein
series in the left and right s-planes; the determination of the functional equation of (1.1) is one of the main
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†The second author was partially supported by PSC-CUNY Research Award No. 67478-00 36 and PSC-CUNY Collaborative Award
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new features of the present article. Finally, we formulate our results using the language and notation of
vector bundles, which shows that the Eisenstein series (1.1) naturally can be viewed as components of
eigensections of certain vector bundles.

The properties of Em,n
a are developed here with two new applications in mind. First, it is well known

that the Kronecker limit formula for the classical Eisenstein series E0,0
a (usually written as just Ea) produces

Dedekind sums. In our forthcoming work [13], we find that E1,1
a yields new types of Dedekind sums with

interesting arithmetic. No such sums were found for E1,0
a though the explicit Kronecker limit formula

for that case was revealed in [12] which included new families of L-functions associated to the Fourier
coefficients of modular forms and classical Kronecker limit functions. Second, in current work of the second
author and Imamoḡlu, a natural inner product for the space of higher-order weight k forms is found. The
usual Petersson inner product may be unfolded to an integral over a vertical strip. For the higher-order
inner product the strip is refolded and detailed knowledge of Em,n

a (z, s) is required.

We view the ideas developed in this article as establishing fundamental results in the theory of higher-
order non-holomorphic Eisenstein series. Numerous other authors have encountered higher-order modular
forms in their research, and we mention briefly three applications that have appeared. Firstly, in [7], [8]
Goldfeld defined the series Em,n

a for the first time and shows their utility in studying the distribution of
modular symbols. Detailed results of this type are required to provide an approach to the ABC-conjecture
via Goldfeld’s conjectures on periods and modular symbols, as described in [6], [9]. Secondly, in [19], [20].
Petridis and Risager prove that, under a certain ordering and normalization, modular symbols follow a
Gaussian distribution. Finally, in [5] it is shown that applying the Hecke operators to the residues of poles
of E1,0

a on the critical line Re(s) = 1/2 yields an identity that can be used to construct an orthonormal basis
for a certain space of Maass forms.

2 Statement of results

Let Em,n = (Em,n
a ) be the r × 1 column vector of Eisenstein series, where we index over all r inequivalent

cusps a of Γ. Let Im,n denote all pairs (i1, i2) for 0 6 i1 6 m and 0 6 i2 6 n, and with the ordering which
has (i1, i2) < (j1, j2) when i1 < j1 or when i1 = j1 and i2 < j2. Let N = r(m + 1)(n + 1) and define the
N × 1 column vector

Em,n = t
(
tEm−i1,n−i2

)
(i1,i2)∈Im,n

. (2.1)

For example, for a group Γ with r = 3 inequivalent cusps, we have when (m,n) = (2, 1),

E2,1 = t
(
tE2,1, tE2,0, tE1,1, tE1,0, tE0,1, tE0,0

)
,

= t
(
E2,1

a , E2,1
b , E2,1

c , E2,0
a , E2,0

b , E2,0
c , · · · , E0,0

a , E0,0
b , E0,0

c

)
.

In this notation, we now state our first main result.

Theorem 2.1. There exists an explicit representation πm,n of Γ into Uni(N,C), the space of N × N unipotent
matrices, such that for all γ ∈ Γ and Re(s) > 1, we have

Em,n(γz, s) = πm,n(γ)Em,n(z, s). (2.2)

Furthermore
∆Em,n(z, s) = s(1− s)Em,n(z, s), (2.3)

where ∆ denotes the usual hyperbolic Laplacian −4y2(d/dz)(d/dz).

One can restate Theorem 2.1 as follows. There exists a unipotent representation πm,n of Γ and associated
vector bundle Vm,n over Γ\H such that for Re(s) > 1, the vector Em,n is a C∞ section of Vm,n; in addition,
Em,n is an eigenvector under the action by the Laplacian ∆ with eigenvalue s(1 − s). If (m, n) = (0, 0),
then Theorem 2.1 reduces to well-known properties of the classical non-holomorphic Eisenstein series. For
all other pairs (m,n), Theorem 2.1 encodes the multiplicative and additive behavior of the higher-order
non-holomorphic Eisenstein series when acted upon by the group Γ and the Laplacian ∆.
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Theorem 2.1 shows that E is a vector-valued automorphic form in the sense of Knopp and Mason [15],
[16]. Non-holomorphic Eisenstein series associated to monomial representations (matrices with one non-
zero entry in each row and column) are studied in [23]. These series arise naturally when attempting to
extend the Rankin-Selberg method, and Taylor in [23] has shown the meromorphic continuation of such
series.

Our next result determines the meromorphic continuation and functional equation for the vector Em,n.
Recall that 〈 γ, f 〉 = 〈 γ, g 〉 = 0 for γ ∈ Γb, since f and g are cusp forms, so then, for any cusps a and b, we
have that Em,n

a (σb(z + 1), s) = Em,n
a (σb(z), s). We conclude that the Eisenstein series Em,n

a admits a Fourier
expansion at the cusp b which can be shown to be

Em,n
a (σbz, s) = δm,n

0,0 · δabys + φm,n
ab (s)y1−s +

∑

k 6=0

φm,n
ab (k, s)Ws(kz), (2.4)

where z = x + iy,
Ws(kz) = 2

√
|k|yKs−1/2(2π|k|y)e2πikx

and Ks−1/2 is the K-Bessel function. The factor δm,n
0,0 is 1 if (m, n) = (0, 0) and 0 otherwise. Also δab is 1

if a = b and 0 otherwise. Equation (2.4) reveals an important property of Em,n: For (m,n) 6= (0, 0) and
Re(s) > 1, Em,n has polynomial decay at every cusp. In essence, this holds because of the definition (1.1)
and since 〈 I2, f 〉 = 〈 I2, g 〉 = 0 where we use Ik to denote the k × k identity matrix.

For (m,n) = (0, 0), the expansion (2.4) is proved in [11, (3.20)] and that proof generalizes to the case
(m,n) = (1, 0) in [17] and easily to all other (m,n). Furthermore, the coefficients φm,n

ab (k, s) can be identified
in terms of Kloosterman sums twisted by modular symbols.

For fixed i and j, let us assemble the functions φi,j
ab(s) in the constant term (in x) of (2.4) into an r × r

matrix
Φi,j(s) =

(
φi,j

ab(s)
)

.

We now construct Φm,n
E , an N ×N matrix from the r × r matrices Φi,j by setting

Φm,n
E =

((
m− i1
j1 − i1

)(
n− i2
j2 − i2

)
Φj1−i1,j2−i2

)
(
(i1,i2),(j1,j2)

)
∈Im,n×Im,n

where we understand that Φu,v = 0 if u or v is negative. Note that we are following standard conventions
for binomial coefficients which set

(
0
0

)
= 1 and

(
n
k

)
= 0 if k < 0 or k > n.

Theorem 2.2. The vector of Eisenstein series Em,n(z, s) admits a meromorphic continuation to all s ∈ C and satisfies
the functional equation

Em,n(z, 1− s) = Φm,n
E (1− s)Em,n(z, s). (2.5)

In addition, the matrix Φm,n
E satisfies the identity

Φm,n
E (1− s)Φm,n

E (s) = IN . (2.6)

In the case when (m,n) = (0, 0), Theorem 2.2 is a classical result of Selberg [21]. When (m,n) = (1, 0),
the proof of Theorem 2.2 appears in [17] where Selberg’s original methods in the case (m,n) = (0, 0) were
modified, taking into account that E1,0 is no longer Γ-invariant. However, the notation in [17] does not
reveal the structure implied by the notation in Theorem 2.1 or Theorem 2.2, which is one important part of
the point of view taken here. Without the notation of Theorem 2.2, the functional equations (2.5) and (2.6)
can be shown to be equivalent to the formulas

∑
06i6m
06j6n

(
m

i

)(
n

j

)
Φi,j(1− s)Em−i,n−j(z, s) = Em,n(z, 1− s), (2.7)

∑
06i6m
06j6n

(
m

i

)(
n

j

)
Φi,j(1− s)Φm−i,n−j(s) =

{
Ir if m = n = 0,
0 otherwise.

(2.8)
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These results should be compared with those of Risager in [20, Chapter 4] where a functional equation is
found with matrix entries involving perturbation coefficients. These coefficients are also expressed there in
terms of certain Dirichlet series.

The next result is an example of the growth properties of Em,n
a which we prove in section 6. We shall use

the notation s = σ + it throughout the paper.

Theorem 2.3. For each compact set S ⊂ C and all integers m,n > 0, there exists a holomorphic function ξm,n
S (s)

such that for all s in S and all k 6= 0, we have

ξm,n
S (s)φm,n

ab (k, s) ¿ (logm+n |k|+ 1)(|k|σ + |k|1−σ). (2.9)

The implied constant depends solely on f, g and Γ.

Finally, we note that the most general form of our theory of higher-order non-holomorphic Eisenstein
series includes more that two modular symbols. As shown in [10], for example, the space of all homomor-
phisms from Γ to C that are zero on parabolic elements is 2g dimensional, where g is the genus of Γ\H, and
is generated by modular symbols and their conjugates. If hi is a basis of such homomorphisms, then we
may consider the general series

E
m1,m2,··· ,m2g
a (z, s; h1, h2, · · · , h2g, χ) =

∑

γ∈Γa\Γ
χ(γ)h1(γ)m1h2(γ)m2 · · ·h2g(γ)m2g Im(σa

−1γz)s. (2.10)

As the reader may verify, the methods in this article apply with very few changes to the series (2.10). Ho-
momorphisms that are not zero on all parabolic elements can also be used in (2.10); see [10] for some initial
results on these series.

3 Some preliminary results

3.1 Higher-order forms

Let us set A0(Γ) = {0} and, for n > 1, define An(Γ) to be the space of smooth functions ψ : H → C such
that

ψ(γz)− ψ(z) ∈ An−1(Γ) for all γ ∈ Γ.

If n = 1, then A1(Γ) is the well-known space of automorphic functions. We call the elements of An(Γ) nth-
order automorphic forms. In this general setting, nth-order automorphic forms were first described in [14]
and [1].

More completely, let j(γ, z) be the usual automorphy factor associated to automorphic forms. For γ ∈ Γ,
character χ of Γ, and integer k ∈ Z, the slash operator is defined on a function f by

(f |k,χγ)(z) =
f(γz)

j(γ, z)kχ(γ)
.

Recursively we define An
k (Γ, χ) to be the space of all smooth functions such that

ψ|k,χγ − ψ ∈ An−1
k (Γ, χ) for all γ ∈ Γ,

where, as before, we setA0
k(Γ, χ) = {0}. In words,An

k (Γ, χ) is the space of weight k, nth-order automorphic
forms which are twisted by the character χ. Observe that if we set ξγ = ψ|k,χγ − ψ then ξγ , as the notation
indicates, may depend on γ, though not arbitrarily: we necessarily have that ξγτ = ξγ |k,χτ + ξτ for all
γ, τ ∈ Γ.

Lemma 3.1. For any 0 6 n 6 m we have An
k (Γ, χ) ⊆ Am

k (Γ, χ).

Proof. We use induction on n. Trivially, we have that A0
k(Γ, χ) ⊆ Am

k (Γ, χ) for any m > 0. This is the base
case. For the inductive step:

ψ ∈ An
k (Γ, χ) =⇒ ψ|k,χγ − ψ ∈ An−1

k (Γ, χ)
=⇒ ψ|k,χγ − ψ ∈ Am−1

k (Γ, χ), m > n (by induction)
=⇒ ψ ∈ Am

k (Γ, χ).

This proves the claim.
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Proposition 3.2. For any n,m > 1, if f ∈ An
k (Γ, χ1) and g ∈ Am

l (Γ, χ2) then

f · g ∈ An+m−1
k+l (Γ, χ1χ2).

Proof. We use induction on n + m. Observe that

(f · g) |k+l,χ1χ2γ = (f |k,χ1γ)(g|l,χ2γ) = (f + f1)(g + g1),

for some f1 ∈ An−1
k (Γ, χ1) and g1 ∈ Am−1

l (Γ, χ2). Hence

(f · g) |k+l,χ1χ2γ − f · g = f1 · g + f · g1 + f1 · g1.

By induction and Lemma 3.1, we have that both f1 · g and f · g1 are elements of An+m−2
k+l (Γ, χ1χ2), and

f1 · g1 ∈ An+m−3
k+l (Γ, χ1χ2) ⊆ An+m−2

k+l (Γ, χ1χ2). Therefore, f · g|k+l,χ1χ2γ − f · g ∈ An+m−2
k+l (Γ, χ1χ2) which

implies that f · g ∈ An+m−1
k+l (Γ, χ1χ2) as required. This proves the induction step.

It remains to prove the first step in the induction, namely when (n,m) = (1, 1). This follows imme-
diately from the observation that the product of two classical automorphic forms of weight k and l is an
automorphic form of weight k + l. With all this, the proof of the proposition is complete.

Remark: We can interpret Lemma 3.1 and Proposition 3.2 as proving that the space of all higher-order
automorphic forms has a graded ring structure. In [3] it is shown that the theory of Rankin-Cohen brackets
applies and gives the set of higher-order forms a canonical RC structure. It is natural to ask if, under either
structure, the graded ring of higher-order holomorphic automorphic forms is finitely generated.

3.2 Higher-order Eisenstein series

We will show that Em,n
a ∈ Am+n+1

0 (Γ, χ) in Lemma 4.2. In this section, we establish some more basic
properties.

To see that the terms in (1.1) are well defined we note that 〈 γ, f 〉 = 0 whenever γ ∈ Γa. Therefore, the
modular symbols are well-defined functions on the cosets Γa\Γ. Similarly, we also require that χ(γ) = 1 for
all γ ∈ Γa and for convergence the character must satisfy |χ| = 1.

The size of an automorphic form in cuspidal zones is of great importance. Following [11], we will
measure the growth of automorphic forms using the invariant height function defined by

yΓ(z) = max
a

max
γ∈Γ

(Im(σa
−1γz)).

Suppose that ψ is a continuous function on H such that |ψ| is Γ-invariant, and let B denote a continuous
positive function on [0,∞). Then it is easy to verify that the following conditions are equivalent:

(i) ψ(σaz) ¿ B(y) as y →∞ for all cusps a,

(ii) ψ(z) ¿ B(yΓ(z)).

More generally, for continuous functions ξ on H which are not necessarily automorphic, it is more con-
venient to fix a fundamental domain, F, and examine their growth on F. Let PY ⊂ H denote the strip with
|x| 6 1/2 and y > Y . We choose F so that it contains the cuspidal zones σaPY for all a and Y large enough
(see [11, Section 2.2]). For z ∈ F we define

yF(z) = max
a

(Im(σa
−1z))

to be the domain height function; with this definition, we assert that the following statements are equivalent

(i) ξ(σaz) ¿ B(y) as y →∞ for all cusps a and all |x| 6 1/2,

(ii) ξ(z) ¿ B(yF(z)) for all z ∈ F.
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Also we observe the relation
yF(z) 6 yΓ(z).

Further required properties of the invariant height are proved in Appendix A.

Proposition 3.3. For m,n > 0 and (m,n) 6= (0, 0) the series (1.1 defining Em,n
a (z, s) converges to a smooth function

of z ∈ H and holomorphic function of s ∈ C provided Re(s) > 1. The convergence is absolute for any s ∈ C with
Re(s) > 1 and uniform in the region Re(s) > 1 + δ for any δ > 0. Furthermore, for Re(s) = σ > 1, the function
Em,n

a (z, s) satisfies the growth condition

Em,n
a (z, s) ¿ yF(z)1−σ+ε (3.1)

for any ε > 0 and all z ∈ F. The implied constant depends only on ε, σ,m, n, f, g and Γ.

Proof. Set

Fa(z) =
∫ z

a

f(w) dw, Ga(z) =
∫ z

a

g(w) dw. (3.2)

First we note that, for any two (possibly equal) cusps a and b and for all z ∈ H,

Fa(σbz) ¿ | log y|+ 1 (3.3)

with the same bound for Ga, where the implicit constant in (3.3) depends solely on f and Γ. To prove (3.3),
observe that the integral of f(z) from z to z + 1 is zero, and that f(z) ¿ 1/y (see [4, Lemma 3]). It also
follows from (3.3) that

Fa(z) ¿ log(yF(z) + e). (3.4)

We shall need some elementary inequalities in the sequel:

| log y| < (yε + y−ε)/ε, (3.5)
| log y|+ 1 < 3 log(y + 1/y), (3.6)

(y + 1)r < 2r(yr + 1), (3.7)
(y + 1/y)r < 2r(yr + y−r) (3.8)

for all y, ε, r > 0.

From (3.3) and (3.5), we deduce that

〈 γ, f 〉 = Fa(γz)− Fa(z)
¿ | log Im(σb

−1γz)|+ | log Im(σb
−1z)|+ 1

¿ Im(σb
−1γz)ε + Im(σb

−1γz)−ε + Im(σb
−1z)ε + Im(σb

−1z)−ε.

Hence, for any ε > 0, any z ∈ H and any cusp a,

〈 γ, f 〉m〈 γ, g 〉n ¿ Im(σa
−1γz)ε + Im(σa

−1γz)−ε + Im(σa
−1z)ε + Im(σa

−1z)−ε (3.9)

with an implied constant depending on f, g, Γ, m, n and ε. Also for any cusp a and any z ∈ F

Im(σa
−1z) 6 yF(z) (3.10)

by definition. It is well-known that the classical non-holomorphic Eisenstein series, meaning (1.1) for
(m,n) = (0, 0), converges for Re(s) > 1 (uniformly for Re(s) > 1 + δ) and satisfies the bound

Ea(z, s) ¿ yΓ(z)σ; (3.11)

see, for example, [11, Corollary 3.5]. Going further, we have that

Ea(z, s)− Im(σa
−1z)s ¿ yF(z)1−σ, (3.12)

for z ∈ F; for the sake of completeness, we will prove (3.12) in detail in Lemma A.3. Since 〈 I2, f 〉 =
〈 I2, g 〉 = 0, the term in (1.1) corresponding to the identity coset vanishes for (m, n) 6= (0, 0). With all this,
we can substitute the bound (3.9) into the definition (1.1) and use (3.10) and (3.12) to complete the proof of
the proposition.
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4 Unipotent higher-order vector bundles

4.1 Automorphy factors

For any f ∈ S2(Γ) it is an easy consequence of elementary complex analysis that, for all γ1, γ2 ∈ Γ,

〈 γ1γ2, f 〉 = 〈 γ1, f 〉+ 〈 γ2, f 〉. (4.1)

This is the basis for the following computation.

Lemma 4.1. For any τ ∈ Γ, let
Si,j(τ) = χ(τ)

(−〈 τ, f 〉)i(−〈 τ, g 〉)j
.

For Re(s) > 1, the Eisenstein series Em,n
a obeys the transformation rule

Em,n
a (τz, s) =

m∑

i=0

n∑

j=0

(
m

i

)(
n

j

)
Sm−i,n−j(τ)Ei,j

a (z, s). (4.2)

Proof. Combining (1.1) and (4.1), we get

Em,n
a (τz, s) =

∑

γ∈Γa\Γ
χ(γ)〈 γ, f 〉m〈 γ, g 〉nIm(σa

−1γτz)s

=
∑

γ∈Γa\Γ
χ(γτ−1)〈 γτ−1, f 〉m〈 γτ−1, g 〉nIm(σa

−1γz)s

=
∑

γ∈Γa\Γ
χ(γ)χ(τ)

(〈 γ, f 〉 − 〈 τ, f 〉)m · (〈 γ, g 〉 − 〈 τ, g 〉)nIm(σa
−1γz)s.

The result now follows by expanding the terms (〈 γ, f 〉 − 〈 τ, f 〉)m and (〈 γ, g 〉 − 〈 τ, g 〉)n.

Lemma 4.2. For m, n > 0 we have Em,n
a ∈ Am+n+1

0 (Γ, χ).

Proof. Using (4.2) we observe that E0,0
a |0,χγ−E0,0

a = 0 and E0,0
a ∈ A1

0(Γ, χ). Now, using induction on m+n,
we have by (4.2) that Em,n

a |0,χγ − Em,n
a is a linear combination of lower order Eisenstein series that are in

Am+n
0 (Γ, χ). The lemma follows.

We now complete the proof of Theorem 2.1.

Proof. Directly from (4.2) we obtain the relation

Em,n(γz, s) =
m∑

i=0

n∑

j=0

(
m

i

)(
n

j

)
Sm−i,n−j(γ)E i,j(z, s) (4.3)

for the r × 1 vector of Eisenstein series Em,n. Construct the N ×N matrix

πm,n(γ) =
((

m− i1
m− j1

)(
n− i2
n− j2

)
Sj1−i1,j2−i2(γ) Ir

)
(
(i1,i2),(j1,j2)

)
∈Im,n×Im,n

. (4.4)

If we replace (m,n) in (4.3) by (u, v), say, then it is elementary to verify that (4.3) can be combined for all
(u, v) 6 (m,n) in the single equation

Em,n(γz, s) = πm,n(γ)Em,n(z, s) , (4.5)

which holds for all γ ∈ Γ, proving (2.2). As for (2.3), this relation following directly from (1.1) when differ-
entiating term by term, using that ∆ys = s(1− s)ys and the fact that ∆ is SL2(R) invariant.

The matrix πm,n(τ) is easily seen to be upper triangular with ones on the diagonal, hence it is unipotent.
Upon replacing z by γz and repeating (4.5), we obtain the relation πm,n(τγ) = πm,n(τ)π(γ). Therefore πm,n

is a representation of Γ into the set of N ×N unipotent matrices with N = r(m + 1)(n + 1). Consequently,
the representation πm,n can be used to define a rank N unipotent vector bundle Vm,n over Γ\H, and (2.2) is
simply the statement that Em,n(z, s) is a section of Vm,n.

With all this, the proof of Theorem 2.1 is complete.
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4.2 An example

A simple case of Theorem 2.1 occurs when (m,n) = (2, 0), for an arbitrary number of cusps r. In this
instance, we see from (4.4) that

π2,0(γ) = χ(γ)




Ir −2〈 γ, f 〉 · Ir 〈 γ, f 〉2 · Ir
Ir −〈 γ, f 〉 · Ir

Ir


 (4.6)

and (4.5) says E2,0(γz, s) = π2,0(γ)E2,0(z, s) which encodes the three identities

E2,0(γz, s) = χ(γ)
(E2,0(z, s)− 2〈 γ, f 〉E1,0(z, s) + 〈 γ, f 〉2E0,0(z, s)

)
,

E1,0(γz, s) = χ(γ)
(E1,0(z, s)− 〈 γ, f 〉E0,0(z, s)

)
,

E0,0(γz, s) = χ(γ)E0,0(z, s) .

5 Constructing an integral equation for Em,n
a

5.1 Bounds for Em,n
a on H

We need bounds for Em,n
a on the upper half plane H. The fact that it is not Γ-invariant makes this hard to

do directly, so we introduce a related automorphic series.

For non-negative integers m and n, we define, using the notation in (3.2), the function

Qm,n
a (z, s) =

∑

γ∈Γa\Γ
χ(γ)Fa(γz)mGa(γz)

n
Im(σa

−1γz)s (5.1)

which will naturally be automorphic wherever it converges. Observe that when m = n = 0 the series (5.1)
is just the usual Eisenstein series Ea(z, s). To see the connection between Em,n

a and Qm,n
a use the identity

Fa(γz)− Fa(z) = 〈γ, f〉 and the binomial theorem to obtain

Qm,n
a (z, s) =

∑

i,j

(
m

i

)(
n

j

)
Fa(z)m−iGa(z)

n−j
Ei,j

a (z, s), (5.2)

Em,n
a (z, s) =

∑

i,j

(
m

i

)(
n

j

)
(−Fa(z))m−i

(
−Ga(z)

)n−j

Qi,j
a (z, s). (5.3)

Since Ei,j
a (z, s) is convergent for Re(s) > 1, so is Qm,n

a (z, s) by (5.2). Using (3.1), (3.4) and (3.11) to bound
the right side of (5.2), we get

Qm,n
a (z, s) ¿ logm+n(yF(z) + e) · yF(z)σ (5.4)

where the implied constant depends on ε, σ, m, n, f , g and Γ alone and z is restricted to F. Since Qm,n
a is

automorphic, and the right side of (5.4) is an increasing function of yF, it follows that, for all m, n > 0 and
z ∈ H,

Qm,n
a (z, s) ¿ logm+n(yΓ(z) + e) · yΓ(z)σ. (5.5)

We need the next result, which is a slightly stronger and more explicit version of [12, Lemma 7.1].

Lemma 5.1. Suppose D is a function on H and B is an increasing function on R+ such that |D(z)| 6 B(yΓ(z)).
Then there exists a constant cΓ > 0, depending only on Γ and defined in (A.1), so that

|D(σbz)| 6 B
(
(cΓ + 1/cΓ)(y + 1/y)

)

for any cusp b and any z ∈ H.

Proof. Using Lemma A.1, which is proved in the appendix to this paper, we have the bound

|D(σbz)| 6 B(yΓ(σbz)) 6 B
(
(cΓ + 1/cΓ)(y + 1/y)

)
,

as claimed.
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It follows from (5.5), Lemma 5.1 and (3.8) that

Qm,n
a (σbz, s) ¿ logm+n ((cΓ + 1/cΓ)(y + 1/y) + e) · ((cΓ + 1/cΓ)(y + 1/y))σ

¿ logm+n(y + 1/y) · (yσ + y−σ).

Substituting this bound into (5.3) then using (3.3) and (3.6), we obtain

Em,n
a (σbz, s) ¿ logm+n(y + 1/y) · (yσ + y−σ).

As a result, we arrive at the following conclusion.

Lemma 5.2. For all z in H, s in C with Re(s) > 1, and m,n > 0,

Em,n
a (σbz, s) ¿ yσ+ε + y−σ−ε

with an implied constant depending only on ε > 0, σ, m, n, f , g and Γ.

5.2 A family of Green functions

Set

u(z, w) =
|z − w|2

4 Im z Im w
.

This function u is closely related to the hyperbolic distance between z and w and satisfies the relation
u(σz, σw) = u(z, w) for all σ in SL2(R); see [11, (1.4)]. We also need the Green function for the Laplacian:

Ga(u) =
1
4π

∫ 1

0

(t(1− t))a−1(t + u)−a dt

for u, a > 0. This function is discussed in [11, Section 1.7]. The Green function Ga(u) is smooth as a function
of u except for a logarithmic singularity at u = 0 which is independent of a. It can be shown that, for
0 < b < a,

Gab(u) := Ga(u)−Gb(u) ¿ 1
(u + 1)b

. (5.6)

The next result is from [17, Theorem 2.3] as well as [11, Section 1.9] and is a restatement of the fact that
the resolvent of the Laplacian can be expressed as an integral operator with kernel given by the above Green
function.

Theorem 5.3. If θ(z) : H → C is an eigenfunction of ∆ with eigenvalue λ that satisfies θ(z) ¿ yσ + y−σ for σ > 0
then, when a > σ + 1, then

−θ(w)
λ + a(1− a)

=
∫

H

Ga(u(w, z))θ(z) dµ(z),

where dµ(z) is the hyperbolic invariant measure dxdy/y2.

Now we can exploit the fact that Em,n
a (z, s) is an eigenfunction of the Laplacian, (2.3), along with Lemma

5.2 and Theorem 5.3 to write

−Em,n
a (z, s)

(a(1− a)− s(1− s))
=

∫

H

Ga(u(z, z′))Em,n
a (z′, s) dµ(z′)

for 1 < Re(s) < a−2. With Lebesgue’s theorems on monotone and dominated convergence and the notation
in Lemma 4.1, we find

−Em,n
a (z, s)

(a(1− a)− s(1− s))
=

∫

F

∑

γ∈Γ

Ga(u(z, γz′))Em,n
a (γz′, s) dµ(z′)

=
∫

F

∑

γ∈Γ

Ga(u(z, γz′))




m∑

i=0

n∑

j=0

(
m

i

)(
n

j

)
Sm−i,n−j(γ)Ei,j

a (z, s)


 dµ(z′).
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Therefore, for 1 < Re(s) < a− 2 we get

−Em,n
a (z, s)

(a(1− a)− s(1− s))
=

∫

F

G0,0
a (z, z′)Em,n

a (z′, s) dµ(z′)

+
∑

06i6m
06i6m

(i,j) 6=(m,n)

(
m

i

)(
n

j

) ∫

F

Gm−i,n−j
a (z, z′)Ei,j

a (z′, s) dµ(z′) (5.7)

where, for z 6≡ z′(mod Γ), we have written

Gi,j
a (z, z′) =

∑
γ

Si,j(γ)Ga(u(z, γz′))

=
∑

γ

Si,j(γ−1)Ga(u(γz, z′)).

The function Gi,j
a (z, z′) will inherit a logarithmic singularity at z ≡ z′(mod Γ). To eliminate the singularity,

we consider the difference

Gi,j
ab (z, z′) := Gi,j

a (z, z′)−Gi,j
b (z, z′) =

∑
γ

Si,j(γ)Gab(u(z, γz′))

for 0 < b < a. To ease the notation we write Ga and Gab for G0,0
a and G0,0

ab respectively, as in [11, (5.1)]. The
next Proposition follows from [11, Theorem 5.3, Lemma 5.4].

Proposition 5.4. For all real a, b with 1 < b < a we have that Gab(z, z′) : H ×H → C converges uniformly to a
smooth function of z, z′ which satisfies

Gab(z, z′) ¿ [yΓ(z)yΓ(z′)]a

where the implied constant depends only on a, b and Γ.

We need a similar result for Gi,j
ab .

Proposition 5.5. For all nonnegative integers (i, j) 6= (0, 0) and all real a, b with 1 < b < a we have that Gi,j
ab (z, z′) :

H×H → C converges uniformly to a continuous function of z, z′ which satisfies

Gi,j
ab (z, z′) ¿ [yF(z)yF(z′)]1−b+ε

for any ε > 0 where the implied constant depends only on ε, a, b, i, j, f, g and Γ.

Proof. We begin by noting that

1
(u(z, z′) + 1)b

=
4bIm(z)bIm(z′)b

(|z − z′|2 + 4Im(z)Im(z′))b

=
4bIm(z)bIm(z′)b

(Re(z − z′)2 + Im(z + z′)2)b
.

So we have, recalling (5.6),

Gi,j
ab (σaz, z′) =

∑

γ∈Γ

Si,j(γ)Gab(u(σaz, γz′))

¿
∑

γ∈Γ

|Si,j(γ)| 1
(u(z, σa

−1γz′) + 1)b

¿
∑

γ∈Γa\Γ
l∈Z

|Si,j(γ)| 4bIm(z)bIm(σa
−1γz′)b

(Re(z − σa
−1γz′ + l)2 + Im(z + σa

−1γz′)2)b
.

Now since ∫ ∞

−∞

dx

(x2 + y2)b
=
√

π
Γ(b− 1/2)

Γ(b)
1

y2b−1
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we obtain

Gi,j
ab (σaz, z′) ¿

∑

γ∈Γa\Γ
|Si,j(γ)| Im(z)bIm(σa

−1γz′)b

Im(z + σa
−1γz′)2b−1

¿ Im(z)1−b
∑

γ∈Γa\Γ
|Si,j(γ)|Im(σa

−1γz′)b.

The proposition now follows as in the proof of Proposition 3.3.

5.3 Applying Fredholm Theory

We must carry out some modifications to equation (5.7) before we can use the next result from [11, A.4].

Theorem 5.6. (Fredholm) Assume
∫
F

dµ(z′) = V < ∞ and that K(z, z′) is bounded and integrable on F×F. Then
for all λ ∈ C there exist D(λ) and Dλ(z, z′) entire in λ with the following property: If q(z) is any bounded integrable
function on F and if h(z) (defined on F) satisfies

h(z) = q(z) + λ

∫

F

K(z, z′)h(z′) dµ(z′)

then h(z) is uniquely determined and given by the formula

h(z) = q(z) +
λ

D(λ)

∫

F

Dλ(z, z′)q(z′) dµ(z′)

when D(λ) 6= 0.

Our situation is slightly complicated by dependence on a parameter s which will be contained in a
compact set S ⊂ C. We will set K(z, z′) = Ks(z, z′) so D(λ) and Dλ(z, z′) vary with s. Also q(z) = q(z, s)
and λ = λ(s), where q, λ and K are analytic functions of s on S. If h(z, s) is analytic in some neighborhood
S′ ⊂ S and satisfies

h(z, s) = q(z, s) + λ

∫

F

Ks(z, z′)h(z′, s) dµ(z′) (5.8)

for all s ∈ S′ then by Theorem 5.6

h(z, s) = q(z, s) +
λ

D(λ)

∫

F

Dλ(z, z′)q(z′, s) dµ(z′)

for all s ∈ S′, where D(λ) 6= 0. (We have assumed that Ks(z, z′) and q(z, s) are uniformly bounded in
S.) However, the right side of this last equation will be meromorphic in the larger domain S, which is the
method we shall use to obtain the analytic continuation of Em,n(z, s).

To apply Fredholm’s Theorem to the integral equation (5.7) we need to carry out some steps to ensure
that the kernel K and function q are bounded. The first is to take the difference of (5.7) at a and b (for
3 < b < a) and eliminate the singularity at z ≡ z′. Therefore, for 1 < Re(s) < b− 2,

Em,n
a (z, s)νab(s) = qm,n(z, s) +

∫

F

Gab(z, z′)Em,n
a (z′, s) dµ(z′) (5.9)

for

qm,n(z, s) =
∑

06i6m
06i6m

(i,j) 6=(m,n)

(
m

i

)(
n

j

) ∫

F

Gm−i,n−j
ab (z, z′)Ei,j

a (z′, s) dµ(z′)

when νab(s) = (a(1− a)− s(1− s))−1 − (b(1− b)− s(1− s))−1.

The next step is to replace the kernel Gab(z, z′) by a kernel GY
ab(z, z′) that has a growing term in z′

removed for z′ in cuspidal zones (these zones depend on a large parameter Y ). This truncated kernel now
has exponential decay as z′ approaches cusps. When this new kernel is inserted into (5.9), terms involving
φm,n

ab (s) appear which can be removed again by taking a certain linear combination at Y , 2Y and 4Y . The
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details of these computations are explained in depth in [11, Chapter 6] and [17, Section 3] so we omit the
discussion. The end result of these computations is the identity

hm,n(z, s) = qm,n
2 (z, s) + λ(s)

∫

F

Hs(z, z′)hm,n(z′, s) dµ(z′) (5.10)

when 3 < Re(s) + 2 < b < a with

hm,n(z, s) = (2s−1+a − 1)(2s−1+b − 1)νab(s)Em,n
a (z, s),

qm,n
2 (z, s) = (2s−1+a − 1)(2s−1+b − 1)qm,n(z, s),

λ(s) =
−1

νab(s)
=

(a− s)(a + s− 1)(b− s)(b + s− 1)
(b− a)(a + b− 1)

, (5.11)

Hs(z, z′) =

(
GY

ab − 2s−1(2a + 2b)G2Y
ab + 22s−2+a+bG4Y

ab

)
(z, z′)

(2s−1+a − 1)(2s−1+b − 1)
. (5.12)

The kernel H still has polynomial growth at cusps in the z variable. The next step is to multiply through
by η(z) = e−ηyΓ(z) with 0 < η < 2π which controls the growth in z; furthermore, the restriction on η
ensures that the new kernel term

(
η(z)η(z′)−1Hs(z, z′)

)
appearing below in (5.13) is bounded. Therefore,

for (m,n) 6= (0, 0), we obtain

η(z)hm,n(z, s) = η(z)qm,n
2 (z, s) + λ

∫

F

(
η(z)η(z′)−1Hs(z, z′)

)(
η(z′)hm,n(z′, s)

)
dµ(z′). (5.13)

Again, a detailed argument regarding the computations behind (5.13) is given in [11] and [17]. Fredholm’s
Theorem will be applied to (5.13) in the course of Theorem 6.5 to achieve the meromorphic continuation of
hm,n and hence Em,n.

6 The continuation

6.1 Proof of the meromorphic continuation of E0,0
a

In [11, Sections 6.1, 6.2] the meromorphic continuation of Ea(z, s) is proved. The following proof is similar
and tailored to extend to higher orders. We also supply some details omitted from the presentation in [11].

Let λ be defined by (5.11) with fixed large constants b < a. Also define

Br = {s ∈ C : |s| 6 r}.
Theorem 6.1. For every ball Br of radius r and nonzero k ∈ Z, there exist functions φab(s) and φab(k, s) which are
meromorphic on Br as well as a function Aa(s) which is analytic on Br so that the following assertions hold for all
s ∈ Br:

(i) We have the bounds

Aa(s)φab(s) ¿ 1,

Aa(s)φab(k, s) ¿ |k|σ + |k|1−σ.

(ii) The Fourier expansion

Ea(σbz, s) = δabys + φab(s)y1−s +
∑

k 6=0

φab(k, s)Ws(kz) (6.1)

agrees with the definition (1.1) for Re(s) > 1, and, for all z ∈ H, the series (6.1) converges to a meromorphic
function for s ∈ Br.

(iii) We have the estimate
Aa(s)Ea(z, s) ¿ yΓ(z)σ + yΓ(z)1−σ. (6.2)

The implied constants in (i) and (iii) depend on r and Γ alone.
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Proof. Let

h(z, s) =
(2s−1+a − 1)(2s−1+b − 1)

22s−1 − 1
νab(s)Ea(z, s) (6.3)

and

l(z, s) =
22s−1+a−b − 1
(2b− 1)(b− s)

Y s−bEa(z, b)− 22s−1−a+b − 1
(2a− 1)(a− s)

Y s−aEa(z, a). (6.4)

Then it is shown in [11, (6.8)], using the same method that proved (5.13), that

η(z)h(z, s) = η(z)l(z, s) + λ

∫

F

(
η(z)η(z′)−1Hs(z, z′)

)(
η(z′)h(z′, s)

)
dµ(z′)

holds for s ∈ Br when
r = b− 3.

(Note: (6.4) corrects a minor error in [11, p. 84].) By construction, η(z)l(z, s) and η(z)η(z′)−1Hs(z, z′) are
bounded for (z, s) ∈ H×Br and (z, z′, s) ∈ H×F×Br respectively; therefore, it follows from Theorem 5.6
that

η(z)h(z, s) = η(z)l(z, s) +
λ

D(λ)

∫

F

Dλ(z, z′)
(
η(z′)l(z′, s)

)
dµ(z′) (6.5)

which is [11, (6.10)]. As shown in [11, Appendix A.4], D(λ) is an analytic function of s and Dλ(z, z′) is
analytic in s, piecewise continuous in z, z′ and bounded for (z, z′, s) ∈ H× F×Br.

By combining (6.3) and (6.5) and setting

Aa(s) = −(2s−1+a − 1)(2s−1+b − 1)D(λ), (6.6)

Aa(z, s) = (22s−1 − 1)λ
[
D(λ)l(z, s) + λη(z)−1

∫

F

η(z′)Dλ(z, z′)l(z′, s) dµ(z′)
]

(6.7)

we have that Aa(s) and Aa(z, s) are analytic in s and

Aa(s)Ea(z, s) = Aa(z, s).

It also follows from (6.7) that
Aa(z, s) ¿ eηyΓ(z) (6.8)

for s ∈ Br with an implicit constant depending only on r and Γ.

We know the Fourier expansion (6.1) is valid for Re(s) > 1. So, for these s values,

φab(k, s) =
1

2
√
|k|yKs−1/2(2π|k|y)

∫ 1

0

Ea(σb(x + iy), s)e−2πikx dx. (6.9)

If we choose y = 1/
√
|k| (for later convergence results) and replace Ea(z, s) by Aa(z, s)/Aa(s) in (6.9) we

find

φab(k, s) =
1

Aa(s)2|k|1/4Ks−1/2(2π
√
|k|)

∫ 1

0

Aa(σb(x + i/
√
|k|), s)e−2πikx dx. (6.10)

This yields the meromorphic continuation of the Fourier coefficients φab(k, s) (and similarly φab(s)) to all s
in Br. But we do not yet know that (6.1) holds in this larger domain. To show that it does, our task becomes
proving bounds on φab(k, s) that ensure (6.1) converges to a meromorphic function on Br.

In the arguments that follow we need additional estimates for the K-Bessel functions, which we state
here. In Lemma 6.4 at the end of this section we will prove that

2
√

uKs−1/2(2πu) ¿ e−2πu
(
ur+3 + u−r−3

)
(6.11)

for all u > 0 and s in Br with an implied constant that depends only on r. Also the asymptotic [11, (B.36)]
shows that there exists an absolute constant C so that, for any s in Br and u > Cr2,

2
√

uKs−1/2(2πu) > e−2πu/2. (6.12)
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Continuing, we now apply Lemma 5.1 to equation (6.8) which produces the bound

Aa(σb(x + i/
√
|k|), s) ¿ eη(cΓ+1/cΓ)(|k|1/2+|k|−1/2). (6.13)

Then using (6.12) and (6.13) in (6.10) we arrive at the inequality

Aa(s)φab(k, s) ¿ e2π
√
|k| · eη(cΓ+1/cΓ)

√
|k|

for s ∈ Br and |k| > C2r4.

Setting y = Cr2/|k| in (6.9) instead of y = |k|−1/2 and using (6.8), (6.12) and Lemma 5.1 shows that, for
all k,

Aa(s)φab(k, s) ¿ e2πCr2
∫ 1

0

|Aa(σb(x + iCr2/|k|), s)| dx (6.14)

¿ e2πCr2
eηyΓ(σb(x+iCr2/|k|)

¿ e2πCr2
eη(cΓ+1/cΓ)[Cr2/|k|+|k|/(Cr2)]

for s ∈ Br and implied constants depending on r and Γ alone. Therefore, for |k| < C2r4 we find that
Aa(s)φab(k, s) ¿ 1. Hence, for all k 6= 0,

Aa(s)φab(k, s) ¿ e2πD
√
|k| (6.15)

with D = 1 + cΓ + 1/cΓ. Similar arguments show that

Aa(s)φab(s) ¿ 1. (6.16)

Next employ the estimate (6.11), which is proved in Lemma 6.4, to see that

|Ws(kz)| ¿ e−2π|k|y (
(|k|y)r+3 + (|k|y)−r−3

)

for s ∈ Br. As a consequence of this inequality and (6.15)

Aa(s)
∑

k 6=0

φab(k, s)Ws(kz) ¿
∞∑

k=1

(
(ky)r+3 + (ky)−r−3

)
e2π[D

√
k−ky]

¿ e−2πy

[
yr+3 +

1
yr+3

+ e8πD2/y

(
1

yr−1
+

1
yr+5

)
+ e−πy

(
y2 +

1
yr+4

)]
. (6.17)

The last estimate (6.17) follows from Lemma 6.2 at the end of this section. We now see that, for all z ∈ H,
(6.1) converges uniformly to a meromorphic function of s ∈ Br, proving part (ii) of the theorem. Also (6.17)
implies that

Aa(σbz, s) = Aa(s)Ea(σbz, s) = Aa(s)
(
δabys + φab(s)y1−s

)
+ O(e−2πyyr+3) (6.18)

as y →∞ and, consequently,

Aa(z, s) = Aa(s)Ea(z, s) ¿ yΓ(z)|σ−1/2|+1/2 (6.19)

for all z ∈ H. The bound (6.19) is a significant improvement of (6.8), and part (iii) of the theorem follows
easily from (6.19). Using (6.19) in (6.14) with Lemma 5.1 produces

Aa(s)φab(k, s) ¿ |k||σ−1/2|+1/2 + |k|−|σ−1/2|−1/2

¿ |k|σ + |k|1−σ.

This bound, along with (6.16), shows part (i) of the theorem and the proof of Theorem 6.1 is complete.
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Lemma 6.2. For any D, r > 0 and y > 0

∞∑

k=1

kre2π(D
√

k−yk) ¿ e−2πy

(
1 +

e−πy

yr+1
+

e8πD2/y

y2r+2

)

for an implied constant depending on r and D alone.

Proof. We may write the left side above as

e2π(D−y) +
∞∑

k=1

(k + 1)re2π(D
√

k+1−yk)e−2πy

which is bounded by

e−2πy

(
e2πD +

∞∑

k=1

(2k)re2π(D
√

2k−yk)

)
. (6.20)

The upper bound
√

2D
√

k − yk 6 −yk/2 holds if and only if k > 8D2/y2 so
∞∑

k=1

kre2π(
√

2D
√

k−yk) =
∑

k68D2/y2

kre2π(
√

2D
√

k−yk) +
∑

k>8D2/y2

kre2π(
√

2D
√

k−yk)

6
∑

k68D2/y2

(8D2/y2)re8πD2/y +
∑

k>8D2/y2

kre−πky

6
(

8D2

y2

)r+1

e8πD2/y +
∞∑

k=1

kre−πky. (6.21)

Use the formula ∫ ∞

0

e−ytts−1 dt =
Γ(s)
ys

for Re(s) > 0, as in [2, (2.4)], to see that
∞∑

k=1

kre−πky 6 e−πy

(
1 + 2re−πy +

3rΓ(r + 1)
(πy)r+1

)
(6.22)

for all r > 0. The proof is completed by combining inequalities (6.20), (6.21) and (6.22).

Lemma 6.3. For σ = Re(s) > 1 and y > 0,

|Ks−1/2(y)| 6 κ(s)e−y
(
yσ−1/2 + y−σ+1/2

)

where κ(s) is the continuous function κ(s) = π1/23σ−1(1 + |Γ(2σ − 1)|)/|Γ(s)|.
Proof. For σ > 0 and y > 0 we have the integral representation

Ks−1/2(y) =
√

π

Γ(s)

(y

2

)s−1/2
∫ ∞

1

(t2 − 1)s−1e−ty dt

from [11, p. 205]. Suppose σ > 1. It is easy to see that
∣∣∣∣
∫ 2

1

(t− 1)s−1(t + 1)s−1e−ty dt

∣∣∣∣ 6 3σ−1e−y

and ∣∣∣∣
∫ ∞

2

(t− 1)s−1(t + 1)s−1e−ty dt

∣∣∣∣ 6 e−y

∫ ∞

1

uσ−1(u + 2)σ−1e−uy du

6 e−y3σ−1

∫ ∞

0

u2σ−2e−uy du

6 e−y3σ−1Γ(2σ − 1)y1−2σ.

Putting these estimates together finishes the proof.
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Lemma 6.4. For all r, y > 0 and all s ∈ Br

Ws(y) := 2
√

yKs−1/2(2πy) ¿ e−2πy
(
yr+3 + y−r−3

)

with an implied constant that depends solely on r.

Proof. Denote by Sm the vertical strip of all s ∈ C with m 6 Re(s) < m + 1. It follows from Lemma 6.3 that

|Ks−1/2(y)| 6 κ2(s)e−y
(
y5/2 + y−5/2

)
when s ∈ S2,

|Ks−1/2(y)| 6 κ1(s)e−y
(
y3/2 + y−3/2

)
when s ∈ S1.

for continuous functions κi(s). Then, using the identity [11, p. 204],

Ks−1/2(y) =
2s + 1

y
Ks+1/2(y)−Ks+3/2(y)

we find
|Ks−1/2(y)| 6 κ0(s)e−y

(
y5/2 + y−5/2

)
when s ∈ S0

and continuing we get

|Ks−1/2(y)| 6 κ−1(s)e−y
(
y3/2 + y−7/2

)
when s ∈ S−1

and in general, for positive integers m,

|Ks−1/2(y)| 6 κ−m(s)e−y
(
y5/2 + y−m−5/2

)
when s ∈ S−m.

Therefore, for all r > 0 and s ∈ Br,

|Ks−1/2(y)| ¿ e−y
(
yr+5/2 + y−r−7/2

)

and the proof follows.

6.2 Proof of the meromorphic continuation of Em,n

One of the main results in this paper is the generalization of Theorem 6.1 to higher orders.

Theorem 6.5. For every ball Br of radius r, nonzero integer k ∈ Z, and all integers m,n > 0 there exist functions
φm,n

ab (s) and φm,n
ab (k, s) which are meromorphic on Br, as well as a function Aa(s) which is analytic on Br so that

the following assertions hold for all s ∈ Br:

(i) We have the bounds

Am+n+1
a (s)φm,n

ab (s) ¿ 1,

Am+n+1
a (s)φm,n

ab (k, s) ¿ (logm+n |k|+ 1)(|k|σ + |k|1−σ).

(ii) The Fourier expansion

Em,n
a (σbz, s) = δm,n

0,0 · δabys + φm,n
ab (s)y1−s +

∑

k 6=0

φm,n
ab (k, s)Ws(kz) (6.23)

agrees with the definition (1.1) for Re(s) > 1 and, for all z ∈ H, converges to a meromorphic function for
s ∈ Br.

(iii) We have the estimate
Am+n+1

a (s)Em,n
a (z, s) ¿ yF(z)|σ−1/2|+1/2. (6.24)

The implied constants in (i) and (iii) depend on r,m, n, f, g and Γ alone.
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Proof. Our proof involves induction on m+n with the first step given in Theorem 6.1. The remainder of this
proof establishes the induction step.

To begin, we shall now make an additional adjustment to (5.13) in order to eliminate possible poles in s.
Set qm,n

A (z, s) = Aa(s)m+nqm,n
2 (z, s) and hm,n

A (z, s) = Aa(s)m+nhm,n(z, s). For 1 < Re(s) and s ∈ Br (with
r = b− 3 as before),

η(z)hm,n
A (z, s) = η(z)qm,n

A (z, s) + λ

∫

F

(
η(z)η(z′)−1Hs(z, z′)

)(
η(z′)hm,n

A (z′, s)
)
dµ(z′). (6.25)

We need to check that η(z)qm,n
A (z, s) is bounded before we may apply Fredholm’s Theorem (Theorem 5.6)

to (6.25). Using Proposition 5.5 and, by induction, part (iii) of the theorem,

qm,n
A (z, s) = Aa(s)m+n(2s−1+a − 1)(2s−1+b − 1)

∑
06i6m
06i6m

(i,j) 6=(m,n)

(
m

i

)(
n

j

) ∫

F

Gm−i,n−j
ab (z, z′)Ei,j

a (z′, s) dµ(z′)

¿
∑

06i6m
06i6m

(i,j)6=(m,n)

∣∣Aa(s)m+n−i−j−1
∣∣
∫

F

∣∣∣Gm−i,n−j
ab (z, z′)Aa(s)i+j+1Ei,j

a (z′, s)
∣∣∣ dµ(z′)

¿
∑

06i6m
06i6m

(i,j)6=(m,n)

∫

F

∣∣yF(z)1−b+εyF(z′)1−b+ε
(
yF(z)σ + yF(z)1−σ

)∣∣ dµ(z′)

¿ 1.

In particular, the function qm,n
A (z, s) is bounded for (z, s) ∈ F×Br and continuous in the z variable. We

can now apply Fredholm’s theorem to (6.25) with the result

hm,n
A (z, s) = qm,n

A (z, s) +
λ

D(λ)

∫

F

η(z)−1η(z′)Dλ(z, z′)qm,n
A (z′, s) dµ(z′) (6.26)

for each s ∈ Br such that D(λ) 6= 0. Hence, if we set

Am,n
a (z, s) = −λ

(
D(λ)qm,n

A (z, s) + λη(z)−1

∫

F

η(z′)Dλ(z, z′)qm,n
A (z′, s) dµ(z′)

)
(6.27)

we find Am+n+1
a (s)Em,n

a (z, s) = Am,n
a (z, s). Also the η(z)−1 term in (6.27) implies that

Am+n+1
a (s)Em,n

a (z, s) ¿ eηyΓ(z). (6.28)

Now we argue as in Theorem 6.1, the only complication being that Em,n
a is not automorphic. Since (6.28) is

also true for all smaller m,n by induction, we have that

Am+n+1
a (s)Qm,n

a (z, s) ¿ logm+n(yF(z) + e) · eηyΓ(z)

for z ∈ F. Hence, for all z ∈ H,

Am+n+1
a (s)Qm,n

a (z, s) ¿ logm+n(yΓ(z) + e) · eηyΓ(z)

since the left side is automorphic and logm+n(yF(z)+ e) is an increasing function of yF(z). With Lemma 5.1,

Am+n+1
a (s)Qm,n

a (σbz, s) ¿ logm+n((cΓ + 1/cΓ)(y + 1/y) + e) · eη(cΓ+1/cΓ)(y+1/y)

¿ logm+n(y + 1/y) · e2π(cΓ+1/cΓ)(y+1/y).

Consequently, with (5.3) and for all z ∈ H,

Am+n+1
a (s)Em,n

a (σbz, s) ¿ logm+n(y + 1/y) · e2π(cΓ+1/cΓ)(y+1/y)

¿ e2πD′(y+1/y)
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for D′ = cΓ + 1/cΓ + 1, say. Now arguing similarly to (6.9) - (6.16) we see that the Fourier coefficients of
Em,n

a may be continued and satisfy the bounds

Am+n+1
a (s)φm,n

ab (s) ¿ 1,

Am+n+1
a (s)φm,n

ab (k, s) ¿ e2πD′′√|k|

with D′′ = 2+ cΓ +1/cΓ. Thus, as in (6.17), we have shown that (6.23) converges to a meromorphic function
for s ∈ Br and that

Am+n+1
a (s)Em,n

a (z, s) ¿ yF(z)|σ−1/2|+1/2. (6.29)

Inductively, it has been shown that the bound (6.29) also is true for all smaller m,n and therefore, again with
(5.2),

Am+n+1
a (s)Qm,n

a (z, s) ¿ logm+n(yF(z) + e) · yF(z)|σ−1/2|+1/2.

The above result is true with yF replaced by yΓ and, employing Lemma 5.1 once more,

Am+n+1
a (s)Qm,n

a (σbz, s) ¿ logm+n(y + 1/y) · (y + 1/y)|σ−1/2|+1/2.

With (5.3) it is now true that

Am+n+1
a (s)Em,n

a (σbz, s) ¿ logm+n(y + 1/y) · (y + 1/y)|σ−1/2|+1/2.

Use this in the analog of (6.14) to finally see that

Am+n+1
a (s)φm,n

ab (k, s) ¿ (logm+n |k|+ 1)(|k|σ + |k|1−σ).

All parts of the theorem have been completed, establishing the induction.

We have a straightforward corollary to the above results.

Corollary 6.6. For every ball Br of radius r and all integers m, n > 0 the following hold for all s ∈ Br, z ∈ H and
τ ∈ Γ:

∆Em,n
a (z, s) = s(1− s)Em,n

a (z, s), (6.30)

Em,n
a (τz, s) =

m∑

i=0

n∑

j=0

(
m

i

)(
n

j

)
Sm−i,n−j(τ)Ei,j

a (z, s) (6.31)

Em,n
a (σbz, s) = δm,n

0,0 · δabys + φm,n
ab (s)y1−s + O(e−2πy) as y →∞. (6.32)

The implied constant in (iii) will depend on r,m, n, f, g and Γ alone.

Proof. To prove (6.30) apply the Laplacian ∆ directly to the Fourier expansion (6.32). The relation (6.31)
clearly follows from (4.2) by analytic continuation. To show (6.32) use part (i) of Theorem 6.5,

Ws(kz) ¿ e−2πky

for ky > r2 (which follows from the asymptotic [11, (B.36)]) and Lemma 6.4.

7 The functional equation

We now prove that Em,n satisfies the functional equations stated in (2.7) and (2.8) which will yield the proof
of Theorem 2.2. Recall from Theorem 6.5 that Em,n

a (z, s) and φm,n
ab (s) are meromorphic functions of s ∈ C.

Theorem 7.1. For all m, n > 0 and all s ∈ C, z ∈ H

∑
06i6m
06j6n

(
m

i

)(
n

j

)
Φi,j(1− s)Em−i,n−j(z, s) = Em,n(z, 1− s) (7.1)

∑
06i6m
06j6n

(
m

i

)(
n

j

)
Φi,j(1− s)Φm−i,n−j(s) =

{
Ir if m = n = 0,
0 otherwise.

(7.2)
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Proof. First set

Jm,n(z, s) :=
∑

06i6m
06j6n

(
m

i

)(
n

j

)
Φi,j(1− s)Em−i,n−j(z, s).

When γ ∈ Γ we see by (6.31) that

Jm,n(γz, s) =
∑

06i6m
06j6n

(
m

i

)(
n

j

)
Φi,j(1− s)

∑
06c6m−i
06d6n−j

(
m− i

c

)(
n− j

d

)
Sm−i−c,n−j−d(γ)Ec,d(z, s)

=
∑

06c6m
06d6n

(
m

c

)(
n

d

)
Sm−c,n−d(γ)

∑
06i6c
06j6d

(
c

i

)(
d

j

)
Φi,j(1− s)Ec−i,d−j(z, s)

=
∑

06c6m
06d6n

(
m

c

)(
n

d

)
Sm−c,n−d(γ)J c,d(z, s). (7.3)

To prove the theorem we use induction on m + n with the base case, (m,n) = (0, 0), being the well-known
functional equation for the classical non-holomorphic Eisenstein series. For the induction step we now
assume that

Ec,d(z, 1− s) = J c,d(z, s) (7.4)

for all c, d with c + d < N and suppose that m + n = N . Combine (7.3) and (7.4) to see that

Jm,n(γz, s) = Jm,n(z, s) +
∑

06c6m
06d6n

(c,d) 6=(m,n)

(
m

c

)(
n

d

)
Sm−c,n−d(γ)J c,d(z, s)

= Jm,n(z, s) + Em,n(γz, 1− s)− Em,n(z, 1− s).

Therefore the function Jm,n(z, s)−Em,n(z, 1−s) is Γ-invariant in the z variable. We also see from (6.30) that
Jm,n(z, s) is an eigenfunction on the Laplacian with eigenvalue s(1− s) and, with (6.24), must be bounded
by yΓ(z)|σ−1/2|+1/2. Therefore, by a result of Selberg (see [11, Lemma 6.4]), Jm,n(z, s) − Em,n(z, 1 − s) is
equal to a linear combination of the classical (m = n = 0) non-holomorphic Eisenstein series:

Jm,n(z, s)− Em,n(z, 1− s) = Ψm,n(s)E0,0(z, s) (7.5)

for some r× r matrix Ψm,n(s). Considering the Fourier expansions of both sides of (7.5) and comparing the
coefficients of ys shows that

Ψm,n(s) = 0

and proves (7.1). Comparing the coefficients of y1−s then yields (7.2). We have now completed the induction
step and the proof is complete.

8 Further examples

Consider a group Γ with r cusps. Taking (m,n) = (2, 1), the action by Γ as described in Theorem 2.1 becomes
the identity




E2,1

E2,0

E1,1

E1,0

E0,1

E0,0




(γz, s) = χ(γ)




1 −〈 γ, g 〉 −2〈 γ, f 〉 2〈 γ, f 〉〈 γ, g 〉 〈 γ, f 〉2 −〈 γ, f 〉2〈 γ, g 〉
1 −2〈 γ, f 〉 〈 γ, f 〉2

1 −〈 γ, g 〉 −〈 γ, f 〉 〈 γ, f 〉〈 γ, g 〉
1 −〈 γ, f 〉

1 −〈 γ, g 〉
1







E2,1

E2,0

E1,1

E1,0

E0,1

E0,0




(z, s)
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where, as in (4.6), each matrix entry above is multiplied by the r × r identity matrix Ir. The functional
equation in Theorem 2.2 is the relation




E2,1

E2,0

E1,1

E1,0

E0,1

E0,0




(z, 1− s) =




Φ0,0 Φ0,1 2Φ1,0 2Φ1,1 Φ2,0 Φ2,1

Φ0,0 2Φ1,0 Φ2,0

Φ0,0 Φ0,1 Φ1,0 Φ1,1

Φ0,0 Φ1,0

Φ0,0 Φ0,1

Φ0,0




(1− s)




E2,1

E2,0

E1,1

E1,0

E0,1

E0,0




(z, s).

As throughout the paper, each entry E is a column vector of size r × 1, and each entry Φ is an r × r matrix.

Consider the specific example when Γ = Γ0(p) is the Hecke congruence group of prime level p. The
group Γ0(p) has two inequivalent cusps which my be uniformized to be at ∞ and 0. In this case, we have
that for each (m, n), the vector Em,n is simply the order pair t(Em,n

∞ , Em,n
0 ). Taking (m,n) = (2, 0), and

omitting z from the notation, Theorem 2.2 yields the identity




E2,0
∞

E2,0
0

E1,0
∞

E1,0
0

E0,0
∞

E0,0
0




(1− s) =




Φ0,0
∞∞ Φ0,0

∞0 2Φ1,0
∞∞ 2Φ1,0

∞0 Φ2,0
∞∞ Φ2,0

∞0

Φ0,0
0∞ Φ0,0

00 2Φ1,0
0∞ 2Φ1,0

00 Φ2,0
0∞ Φ2,0

00

Φ0,0
∞∞ Φ0,0

∞0 Φ1,0
∞∞ Φ1,0

∞0

Φ0,0
0∞ Φ0,0

00 Φ1,0
0∞ Φ1,0

00

Φ0,0
∞∞ Φ0,0

∞0

Φ0,0
0∞ Φ0,0

00




(1− s)




E2,0
∞

E2,0
0

E1,0
∞

E1,0
0

E0,0
∞

E0,0
0




(s). (8.1)

As in [17], each entry in the scattering matrix in (8.1) can be expressed as a type of Kloosterman sum twisted
by modular symbols. It certainly would be interesting to find explicit formulas for the entries of (8.1). The
matrix identity (2.6) implies a number of relations for these scattering matrix entries.

A Invariant height

For any Fuchsian group Γ we define a constant cΓ > 0 as follows. Let

Cab =
{|c| : ( ∗ ∗c ∗ ) ∈ σa

−1Γσb, c 6= 0
}

.

As described in [11, Sections 2.5, 2.6] and [22, Lemma 1.25], there is a smallest element in the set Cab which
we shall denote by c(a, b). With this, we let

cΓ := max
a,b

{c(a, b)−2}. (A.1)

An important point, shown in [11, Section 2.4], is that for any γ ∈ Γ

σa
−1γσb = ( ∗ ∗0 ∗ ) =⇒ a = b and σa

−1γσb = ( 1 l
0 l ) (A.2)

for some l ∈ R. The next result is similar to the second part of [22, Lemma 1.25].

Lemma A.1. For all z ∈ H and every cusp b

yΓ(σbz) 6 (cΓ + 1/cΓ)(y + 1/y).

Proof. We first prove the following fact about the invariant height function yΓ(w): If yΓ(w) > Y then, for any
cusp b, either Im(σb

−1w) > Y or Im(σb
−1w) < cΓ/Y . To see why this is true note that yΓ(w) > Y implies

that there exists a and γ ∈ Γ so that Im(σa
−1γw) > Y . Hence

|j(σa
−1γσb, z)|2 <

y

Y
(A.3)

for z = σb
−1w. Let γ′ = σa

−1γσb = ( ∗ ∗c d ). Now if c = 0 then (A.2) implies that γ′ = ( 1 ∗
0 1 ) and therefore

Im(σb
−1w) > Y . Otherwise, if c 6= 0, we have from (A.3) that

|cy|2 <
y

Y
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and y < 1/(|c|2Y ). That implies y < cΓ/Y as required.

The proof of the lemma is now straightforward. The contrapositive of the first result is that if there exists
a cusp b so that

cΓ/Y 6 Im(σb
−1w) 6 Y

then yΓ(w) 6 Y . In other words, for any cusp b,

cΓ/Y 6 y 6 Y =⇒ yΓ(σbz) 6 Y. (A.4)

Choosing Y = (cΓ + 1/cΓ)(y + 1/y) in (A.4) finishes the proof.

For completeness we also prove a lower bound for the invariant height of any point z in H.

Lemma A.2. For every z ∈ H

yΓ(z) >
{

cΓ if cΓ 6 1/2,√
cΓ − 1/4 if cΓ > 1/2.

Proof. Suppose yΓ(w) < Y then, for all cusps a, b and all γ ∈ Γ we have Im(σa
−1γσbz) < Y for z = σb

−1w.
Hence

|j(σa
−1γσb, z)|2 >

y

Y
. (A.5)

We need to make a careful choice of a, b and γ to get the desired bounds. First choose a, b and γ0 so that
σa
−1γ0σb = ( ∗ ∗c d ) with cΓ = 1/|c|2. Recall that Γb, the subgroup of Γ consisting of elements that fix b, is

generated by a primitive element γb that satisfies σb
−1γl

bσb = ( 1 l
0 1 ). Hence

σa
−1γ0γ

l
bσb = ( ∗ ∗

c d+cl ).

Choose l so that |x + d/c + l| 6 1/2 and put γ = γ0γ
l
b in (A.5) to get

|j(σa
−1γσb, z)|2 = |c|2 (|x + d/c + l|2 + y2

)
>

y

Y

and therefore
1/4 >

cΓy

Y
− y2. (A.6)

Complete the square in (A.6) and replace Y by cΓ/
√

u2 + 1 for a new parameter u to get

y = Im(σb
−1w) > (u +

√
u2 + 1)/2.

Since yΓ(w) > Im(σb
−1w), our work to this point has shown that

yΓ(w) <
cΓ√

u2 + 1
=⇒ yΓ(w) > (u +

√
u2 + 1)/2 (A.7)

for any u > 0.

If cΓ 6 1/2 then taking u = 0 in (A.7) shows that yΓ(w) < cΓ is impossible. If cΓ > 1/2 then

cΓ√
u2 + 1

= (u +
√

u2 + 1)/2

has a positive solution, namely u = (2cΓ − 1)/
√

4cΓ − 1. Substituting this value into (A.7), we arrive at the
bound

yΓ(w) <
√

cΓ − 1/4 =⇒ yΓ(w) >
√

cΓ − 1/4

and deduce that yΓ(w) <
√

cΓ − 1/4 is impossible. This completes the proof.

Let yΓ be the minimum value of yΓ(z). For example, when Γ = SL2(Z) we have cΓ = 1 and therefore by
Lemma A.2 we know yΓ >

√
3/2. In fact, by examining the Ford fundamental domain for SL2(Z) we see

that yΓ =
√

3/2.

We conclude with the result quoted in the proof of Proposition 3.3.
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Lemma A.3. For Re(s) = σ > 1 and an implied constant depending on σ, Γ alone,

Ea(z, s)− Im(σa
−1z)s ¿ yF(z)1−σ.

Proof. We know from [11, Corollary 3.5] that

Ea(σbz, s) = δabys + φab(s)y1−s + O(e−2πy)

as y →∞. Hence
Ea(σaz, s)− Im(σa

−1σaz)s ¿ y1−σ

as y →∞ and, for a 6= b

Ea(σbz, s)− Im(σa
−1σbz)s = −Im(σa

−1σbz)s + φab(s)y1−s + O(e−2πy)
¿ Im(σa

−1σbz)σ + y1−σ.

By (A.2) we have σa
−1σb = ( ∗ ∗c d ) with c 6= 0 and

Im(σa
−1σbz)σ =

yσ

|cz + d|2σ
=

yσ

(|cx + d|2 + |cy|2)σ
6 yσ

|cy|2σ
6 (cΓ)σy−σ.

The result follows.
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