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Abstract We discuss equivalent definitions of holomorphic second-order cusp forms

and prove bounds on their Fourier coefficients. We also introduce their associated

L-functions, prove functional equations for twisted versions of these L-functions and

establish a criterion for a Dirichlet series to originate from a second order form. In

the last section we investigate the effect of adding an assumption of periodicity to this

criterion.
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1 Introduction

The study of second-order modular forms has been initiated in connection with per-

colation theory [7] and Eisenstein series formed with modular symbols (cf. [1]). More

recently, second-order modular forms have appeared in research on converse theorems.

Specifically, the pursuit of converse theorems for L-functions requiring the min-

imum number of twists possible has been a long-standing project of great interest.

One of the approaches, due to B. Conrey and D. Farmer, has been successful in small

levels (cf. [2]). It transpires that, for the extension of this approach to higher levels, it

is necessary to study a kind of second-order modular form that involves two groups. In

particular, proving that, in some cases, there are no such functions (besides the usual

modular forms) is enough to prove a converse theorem without twists for some levels

(cf. [3]).

Motivated by this relation between such forms and converse theorems of

L-functions and by the success of L-functions in the study of usual modular forms, in

this paper we initiate a study of L-functions of second-order modular forms.

In Section 2, we first define and classify the holomorphic second-order modular

forms. Although the structure of general second-order modular forms has already

been determined in [1], a separate discussion is necessary here mainly because we re-

quire precise information about growth in the sequel. Moreover, for our investigations

on converse theorems mentioned above, we are also interested in holomorphic

second-order modular forms that are not invariant under all parabolics.

In Section 3 we see that the L-function of a second-order modular form satisfies the

usual functional equation. We did not find a functional equation for the L-function of a

second-order modular form with Fourier coefficients twisted by a Dirichlet character.

Instead, we used the classification theorem to define two twisting operators which do

yield a functional equation (Theorem 11).

Given that we do not have a functional equation of the classical type, we should not

expect a converse theorem for second-order modular forms. Nevertheless, we managed

to apply Razar’s method to obtain a criterion for functions satisfying certain 4-term

functional equations to be L-functions of second-order modular forms. Section 4 is

devoted to the statement and proof of this criterion (Theorem 14).

The paper ends in Section 5 with a discussion of the effect of the periodicity on

functions satisfying this criterion and on second-order modular forms in general. We

do believe that the twisted L-function of a second-order modular form should have a

functional equation of the usual type. It seems likely that it will require two Dirichlet

characters and be a 4-term functional equation similar to the one in Theorem 14. In

future work we hope to find it along with its converse theorem.

The eventual goal is to extend these results to more general cases and, especially,

to cases related to the converse theorem. For this reason, we have tried to minimize

the dependence of our proofs on the specific features of the functions in [1].

2 The space of holomorphic second-order cusp forms

The definitions and some basic properties of the holomorphic automorphic forms

under study are now given. We try to make the conditions and definitions for these
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L-functions of second-order cusp forms 329

spaces as flexible as possible. Some of this material is standard (see for example [5, 8])

but is included for comparison with the corresponding facts for second-order modular

forms.

We first describe the group, group action and other concepts on which all subsequent

definitions are based. In subsection 2.1 we discuss two equivalent definitions of the

classical cusp forms. Next, in 2.2 we give several equivalent definitions of the second-

order cusp forms and prove some basic properties. Finally, in 2.3 we introduce a

variation of these second-order forms that dispenses with one of the equivariance

conditions and we give a characterization of their space.

Let � be a Fuchsian group of the first kind with parabolic elements and of genus

g. We use the set of generators of � given by Fricke and Klein. Specifically, there are

2g hyperbolic elements γ1, . . . , γ2g, r elliptic elements ε1, . . . , εr and m parabolic

elements π1, . . . , πm generating � which satisfy the r + 1 relations:

[γ1, γg+1] · · · [γg, γ2g]ε1 · · · εrπ1 · · · πm = 1, ε
e j

j = 1

for 1 � j � r and integers e j � 2. Here [a, b] denotes the commutator a−1b−1ab of

a and b.

Now, fix a fundamental domain F for �\h, where h is the upper-half plane. Since �

is a Fuchsian group of the first kind we assume its boundary is a polygon and label the

finite number of inequivalent cusps with Gothic letters such as a, b. The corresponding

scaling matrices σa, σb in SL2(R) map the neighborhood of each cusp to the upper

part of the vertical strip of width one. This means that σ−1
a �aσa = �∞ for

�a = {γ ∈ � | γ a = a},

�∞ =
{

±
[

1 n

0 1

] ∣∣∣∣ n ∈ Z
}
,

where �∞ is not necessarily in � and ∞ may not be a cusp of F. See [6], Chapter 2

for this notation and more details.

For every even k ∈ Z, we define an action of GL2(R)+ on the space of functions

on h, setting

( f |kγ )(z) := f (γ z)(cz + d)−k(det(γ ))k/2

for all f : h → C, z = x + iy ∈ h and γ = [
∗ ∗
c d ] ∈ GL2(R)+. We extend the action

to C[GL2(R)+] by linearity. Throughout the paper we use T and S for the generators

[
1 1

0 1
] and [

0 −1

1 0
] of SL2(Z), respectively.

2.1 The classical cusp forms

Definition of Sk(�). Let k be a positive even integer. Define Sk(�) to be the C-vector

space of functions f such that

A1. f : h → C is holomorphic,
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330 N. Diamantis et al.

A2. f |k(γ − 1) = 0 for all γ in �,

A3. (“vanishing at the cusps”) for each cusp a, ( f |kσa)(z) � e−cy as y → ∞ uni-

formly in x for a constant c > 0.

We call the elements of this space the holomorphic weight k cusp forms. The growth

condition A3 is simple and natural but it is often useful to know the growth of f in the

entire upper half plane without referring to the cusps. To achieve this goal we need

the following proposition.

Proposition 1. Suppose f is holomorphic on h and that yr | f (z)| � 1 for some r �
k/2. If ( f |kσa)(z + 1) = ( f |kσa)(z) for some cusp a then

( f |kσa)(z) =
∞∑

n=0

ba(n)e(nz) (1)

where ba(n) � nr for n � 1. If r < k then ba(0) = 0.

Since the proof would interrupt the exposition we put it at the end of Section 2.

We may now replace A3 by

A3.1. yk/2| f (z)| � 1 for all z in h.

Lemma 2. We have f ∈ Sk(�) if and only if f satisfies A1, A2 and A3.1.

Proof: Any f in Sk(�) has exponential decay at each cusp by A3 and hence yk/2| f (z)|
is bounded on F, Implicitly here, and throughout this paper, we are thinking of the

fundamental domain F as a central compact set attached to noncompact cuspidal zones.

Each of these zones is homeomorphic, by way of a scaling matrix, to the upper part

of a vertical strip. See [6] Section 2.2 for a more complete discussion of this. Now

if yk/2| f (z)| � C on F then it is necessarily bounded by C on γF also, for any γ in

�, since yk/2| f (z)| has weight 0. The images of F tessellate h and it follows that f
satisfies A3.1..

In the other direction, suppose f satisfies A1, A2 and A3.1. By Proposition 1, f
has the Fourier expansion (1) at any cusp a with Fourier coefficients ba(n) � nk/2 and

ba(0) = 0. Therefore f has exponential decay at any cusp. �

Incidentally, in the proof we showed Hardy’s ‘trivial’ bound of nk/2 for the nth

Fourier coefficient of f in Sk(�).

2.2 The second-order cusp forms

Definition of S2
k (�). We define the space S2

k (�) to consist of functions f such that

B1. f : h → C is holomorphic,

B2. f |k(γ − 1) ∈ Sk(�) for all γ in �,

B3. (“vanishing at the cusps”) for each cusp a, ( f |kσa)(z) � e−cy as y → ∞ uni-

formly in x for a constant c > 0,

B4. f |k(π − 1) = 0 for all parabolic π in �.
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L-functions of second-order cusp forms 331

This is the space of holomorphic, weight k, (parabolic) second-order cusp forms. It is

similar to Sk(�), the only difference being the transformation rule B2.
We recall the definitions of the functions �i of [1]. For 1 � i � 2g we may define

Li ∈ Hom(�, C) such that

Li (γ j ) = δi j

for the hyperbolic generators and

Li (γ ) = 0

for the parabolic and elliptic generators γ of �. Each Li vanishes at the parabolic

elements of �. Therefore, by the Eichler-Shimura isomorphism (cf. e.g. [1]), for each

i ∈ {1, . . . , 2g} there exist gi , hi ∈ S2(�) such that the function �i defined by

�i (z) :=
∫ z

z0

gi (w)dw +
∫ z

z0

hi (w)dw

for a fixed z0 ∈ h, satisfies

�i (γ z) − �i (z) = Li (γ )

for all z ∈ h and all γ ∈ �. The fixed point z0 is usually taken to be the imaginary

number i. For convenience we also set �0 ≡ 1.

We need the following result.

Lemma 3. For 1 � i � 2g, all z in h, all y ∈ � and any cusp a we have

�i (z) � ∣∣ log Im
(
σ−1

a γ z
)∣∣ + 1,

with the implied constant independent of z.

Proof: We have

�i (γ
−1σaz) =

∫ γ −1σaz

z0

gi (w)dw +
∫ γ −1σaz

z0

hi (w)dw

=
∫ z

σ−1
a γ z0

(gi |2σa)(w)dw +
∫ z

σ−1
a γ z0

(hi |2σa)(w)dw.

Note that gi |2σa and hi |2σa are elements of S2(σ−1
a �σa) and by A3.1 satisfy

(gi |2σa)(w), (hi |2σa)(w) � Im(w)−1 for all w in h. Also, by the Fourier expansion

(1), we have ∫ z+1

z
(gi |2σa)(w)dw = 0
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and the same for hi |2σa so that

�i (γ
−1σaz) �

∫ iy

σ−1
a γ z0

Im(w)−1dw � | log y| + 1.

Replacing z by σ−1
a γ z completes the proof. �

Theorem 4. We have f in S2
k (�) if and only if f : h → C is holomorphic and may be

written as

f =
2g∑

i=0

fi�i

where fi is in Sk(�) for i > 0 and f0 is a smooth function on h of weight k that satisfies
A2 and A3, i.e. ( f0|kσa)(z) � e−cy as y → ∞ uniformly in x for some c > 0. Also,
for fixed �i , the functions fi are uniquely defined by f.

Proof: In one direction, if f = ∑2g
i=0 fi�i then f |k(γi − 1) = fi for all hyperbolic

generators γi . Also f |k(γ − 1) = 0 for γ a parabolic or elliptic generator. Conditions

B2 and B4 now hold since they are true for the generators of the group. To verify B3
we see that, by Lemma 3, f will have exponential decay at the cusps if each fi does.

In the other direction, given any f ∈ S2
k (�) set fi = f |k(γi − 1) for 1 � i � 2g and

f0 = f − ∑2g
i=1 fi�i It is clear that f0 is smooth, has weight k and has exponential

decay at each cusp.

Finally, that the functions fi are uniquely determined by f is obvious. �

A weaker condition than B2 is:

B2.1. f |k(γ − 1)(δ − 1) = 0 for all γ, δ in �.

The combination B1, B2.1, B3 and B4 does not give S2
k (�). We need to strengthen

B3 in this case to have exponential decay on all the images of 	 under the group

action. Note that if a is a cusp of F then γ a will be a cusp of γF and σγa = γ σa

since σγa∞ = γ σa∞ = γ a and σ−1
γa �γaσγa = �∞. Therefore exponential decay for

all images of F means the following:

B3′. for all γ ∈ � we have ( f |k(γ σa)(z) � e−cy as y → ∞, uniformly in x with c
and the implied constant depending on γ .

It is easy to see that we then have

Lemma 5. f ∈ S2
k (�) if and only if f satisfies B1, B2.1, B3′ and B4.

This was the definition of S2
k (�) given in [1]. The analog of A3.1 is

B3.1. yk/2 (| log Im(σ−1
a γ z)| + 1)−1| f (z)| � 1 for all z in h, all γ in � and any cusp

a with an implied constant independent of z.

Lemma 6. We have f ∈ S2
k (�) if and only if f satisfies B1, B2.1, B3.1 and B4.
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Proof: For f ∈ S2
k (�), B2.1 is clearly true and we need only check that B3.1 holds.

By Theorem 4 and Lemma 3

yk/2

| log Im(σ−1
a γ z)| + 1

| f (z)|

� yk/2| f0(z)|
| log Im (σ−1

a γ z)| + 1
+

2g∑
i=1

yk/2| fi (z)| |�i (z)|
| log Im (σ−1

a γ z)| + 1

� 1.

Conversely, suppose f satisfies B1, B3.1 and B4. Proposition 1 can be adapted to

show that f satisfies (1) for ba(n) � nk/2 log n and ba(0) = 0. Thus f has exponential

decay on the cusps of F : ( f |kσa)(z) � e−2πy as y → ∞ uniformly in x . Replace σa

by σγa = γ σa in the above proof to show that it also has exponential decay on the

cusps of γF. Thus the difference ( f |kγ )(z) − f (z) has exponential decay at the cusps

and with B2.1 it has weight k. Conditions B2 and B3 (or alternatively B3′) now follow.

�

The proof of Lemma 6 also gives

Lemma 7 (‘Trivial’ bound). The nth Fourier coefficient of a holomorphic second-
order cusp form of weight k is � nk/2 log n.

2.3 A variation of S2
k (�)

In view of the ‘twist-less’ converse theorem we seek, we are also interested in the

larger space of second-order cusp forms that do not necessarily satisfy B4, i.e. for

parabolic elements π we may not have f |k(π − 1) = 0.

Definition of P S2
k (�). Define this space to be all functions satisfying

B1. f : h → C is holomorphic,

B2.1. f |k(γ − 1)(δ − 1) = 0 for all γ, δ in �,

B3∗. (“vanishing at the cusps”) for each cusp a and all γ ∈ � we have

( f |k(γ σa))(z) � e−cy(1 + |x |) as y → ∞ with c and the implied constant depending

on γ .

To formulate Theorem 9 (the analog of the classification Theorem 4) we need to de-

fine the space of all modular forms, not necessarily with exponential decay at the cusps.

Definition of Mk(�). Let Mk(�) denote functions satisfying the conditions A1, A2 and

C3 where

C3. ( f |kσa)(z) � 1 as y → ∞ uniformly on h.

With Proposition 1 we may check that C3 can be replaced by the equivalent condition

C3.1. yk | f (z)| � 1 for all z in h.

We also need to associate functions to the parabolic generators, which satisfy equa-

tions similar to those of �i of Subsection 2.1. For 2g + 1 � i � 2g + m − 1 we may
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define Li ∈ Hom(�, C) such that

Li (π j ) = δ(i−2g) j , Li (πm) = −1

and

Li (γ ) = 0,

for all nonparabolic generators γ of �. These give well-defined maps because of the

relations the chosen generators of � satisfy. By the Eichler-Shimura isomorphism, for

each i ∈ {2g + 1, . . . , 2g + m − 1} there exist gi ∈ M2(�), hi ∈ S2(�) such that the

function �i defined by

�i (z) :=
∫ z

z0

gi (w)dw +
∫ z

z0

hi (w)dw

where z0 is a fixed element of h, satisfies

�i (γ z) − �i (z) = Li (γ ),

for all z ∈ h and all γ ∈ �.

Now, as in the proof of Lemma 3, for gi ∈ M2(�) we see (with C3.1) that

∫ γ −1σα z

z0

gi (w)dw � 1

y
+ |x |

y2
+ 1.

Therefore,

�i (γ
−1σaz) � 1

y
+ |x |

y2
+ | log y| + 1

and we have the following analog of Lemma 3.

Lemma 8. For 2g + 1 � i � 2g + m − 1, all z ∈ h, γ ∈ � and any cusp a we have

�i (z) � 1

Im
(
σ−1

a γ z
) +

∣∣Re
(
σ−1

a γ z
)∣∣

Im
(
σ−1

a γ z
)2

+ ∣∣ log Im
(
σ−1

a γ z
)∣∣ + 1

with the implied constant independent of z.

In a way similar to the proof of Theorem 4, we can then use Lemma 8 to show the

next result.

Springer



L-functions of second-order cusp forms 335

Theorem 9. We have f in P S2
k (�) if and only if f : h → C is holomorphic and may

be written as

f =
2g+m−1∑

i=0

fi�i

where fi is in Sk(�) for i > 0 and f0 is a smooth function on h weight k that satisfies
A2 and A3, i.e. ( f0|kσa)(z) � e−cy as y → ∞ uniformly in x for some c > 0. Also,
for fixed �i , the functions fi are uniquely defined by f .

We close this section with the promised proof of Proposition 1.

Proof of Proposition 1: If f is holomorphic then so is f |kσa and, if it is periodic, it

must have the Fourier expansion (1) since any terms e(nz) with n < 0 would violate

yr | f (z)| � 1. For n � 1 we have

ba(n) = e−2π

∫ 1

0

( f |kσa)(x + i/n)e−2π inx dx

� nk/2

∫ 1

0

Im (σa(x + i/n))k/2| f (σa(x + i/n))|dx

� nk/2Im (σa(x + i/n))k/2−r .

Now

Im

((∗ ∗
c d

)
(x + i/n)

)−1

= n((cx + d)2 + c2/n2) � n

for x ∈ [0, 1] and the implied constant depending on c, d. Hence ba(n) � nr .

Also

ba(0) =
∫ 1

0

( f |kσa)(x + iy)dx

�
∫ 1

0

y−k/2Im (σa(x + iy))k/2| f (σa(x + iy))|dx .

As y → ∞ we have 1/y � Im(σa(x + iy)) if σa is not upper triangular. Therefore, as

y → ∞,

ba(0) �
∫ 1

0

Im(σa(x + iy))k | f (σa(x + iy))|dx

�
∫ 1

0

yr−kIm(σa(x + iy))r | f (σa(x + iy))|dx

� yr−k .
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If σa is upper triangular then y � Im (σa(x + iy)) as y → ∞ and

ba(0) �
∫ 1

0

| f (σa(x + iy))|dx

� y−r .

Either way, ba(0) = 0, and the proof is complete. �

3 Functional equations

In this section, we first prove a functional equation for the L-function we associate

to second-order cusp forms. Next, we define two twisting operators, one playing

the role of the contragredient of the other. Finally, we prove a functional equation

(Theorem 11) for the second-order cusp forms of P S2
k twisted according to these

operators.

We specialize to the case � = �0(N ), for a fixed positive integer N and write Sk(N )

for Sk(�0(N )) etc. Set WN := [
0 −1

N 0
] and define f̂ := f |k WN for f a weight k, first

or second order modular form.

Proposition 10. If f ∈ Sk(N ), then f̂ ∈ Sk(N ). Also, if F ∈ S2
k (N ), then F̂ ∈ S2

k (N ).

Proof: Since WN normalizes �0(N ), f̂ satisfies A2. It also satisfies A3.1 because

y
k
2 | f̂ (z)| = y

k
2 N− k

2 |z|−k

∣∣∣∣ f

(−1

N z

)∣∣∣∣ � y
k
2 N− k

2 |z|−kIm

(−1

N z

)− k
2

� 1.

Therefore, by Lemma 2, f̂ ∈ Sk(N ).

In a similar way, if F ∈ S2
k (N ), then F̂ satisfies B1, B2.1 and B4. On the other

hand,

y
k
2

(∣∣ log
(
Im

(
σ−1

a γ z
))∣∣ + 1

)−1|F̂(z)|

= y
k
2

(∣∣ log
(
Im

(
σ−1

a γ z
))∣∣ + 1

)−1
N− k

2 |z|−k

∣∣∣∣F(−1

N z

)∣∣∣∣
� (∣∣ log

(
Im

(
σ−1

a γ z
))∣∣ + 1

)−1(∣∣ log(Im
(
σ−1

b
δWN z

))∣∣ + 1
)

for every cusp b and each δ ∈ �0(N ). The final step is to choose b and δ so that

σ−1
a γ = σ−1

b
δWN : Since γ −1a and WN γ −1a are also cusps of �0(N ) we must have

b = δWN γ −1a for a b in the set of inequivalent cusps and a δ ∈ �0(N ). Because of

the relation στa = τσa, this implies that σ−1
a γ = σ−1

b
δWN . Thus F̂ satisfies B3.1 and

by Lemma 6 we are done. �
Springer
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If F(z) = ∑∞
n=1 ane2πnz ∈ S2

k (N ), then its L-function is defined by

L(s, F) =
∞∑

n=1

an

ns
= (2π )s�(s)−1�(s, F)

for �(s, F) = ∫ ∞
0

F(iy)ys−1dy. Since ∞ and 0 are cusps of �0(N ), where F has

exponential decay, we see that L(s, F) has a meromorphic continuation to s ∈ C. The

functional equation

i−k N
k
2
−s�(k − s, F) = �(s, F̂)

follows by a simple change of variables in the above integral just as in the case of L-

functions of first order cusp forms.

In order to get a functional equation for the L-function of F twisted by a Dirichlet

character we may define two twisting operators as follows.

First of all, for any function g on h and a Dirichlet character χ mod N , we set

gχ (z) =
∑

0<M<N

χ (m)g

(
z + m

N

)

Here, as in all the sums appearing in the sequel, the sum ranges only over integers

that are relatively prime to the modulus. Set S = [
0 −1

1 0
]. It is known (cf. [9]) that

a holomorphic function f on h is �0(N )-invariant if and only if it is periodic with

period 1 and

fχ |k S = χ (−1) fχ̄ (2)

for all Dirichlet characters χ mod Nc, (c ∈ {1, . . . , N }).
For F ∈ P S2

k (N ) decomposed as in Theorem 9, we define

Fχ =
2g+m−1∑

i=1

( fi )χ�i + ( f0)χ

and its “contragredient”

F̆χ (z) =
2g+m−1∑

i=1

( fi )χ (z)

( ∫ z

i
(gi |2S)(w)dw +

∫ z

i
(hi |2S)(w)dw

)
+ ( f0)χ (z).

We also set

L(s, F, χ ) := (2π )s�(s)−1�(s, F, χ ) = (2π )s�(s)−1

∫ ∞

0

Fχ (iy)ys−1dy and

L∗(s, F, χ ) := (2π )s�(s)−1�∗(s, F, χ ) = (2π )s�(s)−1

∫ ∞

0

F̌χ (iy)ys−1dy.
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Theorem 11. For F ∈ P S2
k (N ) the following functional equation holds:

�(k − s, F, χ ) = i kχ (−1)�∗(s, F, χ̄ ).

Proof: Apply S to Fχ to get

Fχ |k S =
2g+m−1∑

i=0

(( fi )χ |k S)(z)�i (Sz)

=
2g+m−1∑

i=1

(( fi )χ |k S)(z)

( ∫ Sz

i
gi (w)dw +

∫ Sz

i
hi (w)dw

)
+ ( f0)χ |k S.

Since S fixes i we can make the change of variables w → Sw in the integrals. This,

in combination with (2), gives

χ (−1)

(
2g+m−1∑

i=1

( fi )χ̄ (z)

∫ z

i
(gi |2S)(w)dw +

∫ z

i
(hi |2S)(w)dw + ( f0)χ̄ (z)

)
= χ (−1)F̌ χ̄ .

It should be noted that, although f0 is not necessarily holomorphic, (2) applies to it too

because the derivation of (2) depends only on algebraic manipulations on Z[GL2(R)].

Applying the Mellin transform to this equality we obtain

i−k
∫ ∞

0

Fχ

(
i

y

)
ys−k dy

y
= χ (−1)

∫ ∞

0

F̌ χ̄ (iy)ys dy

y
.

The change of variables y → 1
y in the first integral implies the functional equation.

�

We cannot use this theorem directly in order to obtain a meaningful converse

theorem for second-order modular forms. The reason is that, in this approach, we

must be able to isolate the functions fi from the given function F for the above

functional equation to even be set up. The functions fi are F |k(γi − 1) for certain

elements γi of � and in the next section we give a criterion for a function to be in P S2
k

which is based on each F |k(γi − 1) separately.

4 A converse theorem

In this section, we will use Razar’s method (cf. [9]) to prove a criterion for a function

to be a second-order cusp form. After selecting a set of generators for �0(N ) in Lemma

12, we review the proof of an unpublished result by Flood (Lemma 13) that considers

the effect of twisting on functions from a more general standpoint than that of [9].

After these preliminaries, we state and prove our criterion, Theorem 14.
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For c, c1 ∈ {1, . . . , N }, let ψ be a Dirichlet character mod(Nc1) and let χ, w be

Dirichlet characters mod (Nc). Set

Fχ,ψ,ω :=
∑

0<m,b<Nc
0<a<Nc1

ψ(a)χ (m)ω(b)F

∣∣∣∣∣
k

[
c ac − bc1 + mc1

0 Ncc1

]
and

Fχ,ψ,ω :=
∑

0<m,b<Nc
0<a<Nc1

ψ(a)χ (m)ω(b)F

∣∣∣∣∣
k

[
mc m(ac − bc1) − c1

Nc2 Nc(ac − bc1)

]
.

We now fix a set of generators for �0(N ). To this end we define a family of elements

of �0(N ) which we will use to prove a lemma from [9].

Let c be a positive integer. For each 0 < a < Nc((a, Nc) = 1) choose one matrix

Va =
[

a ba

Nc da

]
∈ �0(N )

such that −Nc < da < 0. For each positive integer c, we denote the set of all such

matrices by Sc.

Lemma 12 ([9]). (i) The set
⋃N

c=1 Sc ∪ {[ 1 1

0 1
]} ∪ {[ −1 0

0 −1
]} generates �0(N ).

(ii) If N = pr (p prime), then �0(N ) is generated by [
−1 0

0 −1
], [

1 1

0 1
] and [

a b
N d ] ∈

�0(N ), as a ranges over a system of residues mod N prime to N.

We will also need a lemma from [4]. Since it has not been published and since our

statement is somewhat more general than that in [4], we give a proof here.

Lemma 13 ([4]). Set S = [
0 −1

1 0
]. Let χ be a character mod(Nc) and let F be a function

on h. Then,

Fχ |k S = χ (−1)Fχ̄ + χ (−1)qχ

where qχ = ∑
0<a<Nc χ̄ (da)qVa ( z−da

Nc ) and qV a = F |k Va − F.

Proof: We have

Va

(
z − da

Nc

)
= −z−1 + a

Nc
and Nc

(
z − da

Nc

)
+ da = z.
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Therefore,

(Fχ |k S)(z) = z−k Fχ (−z−1) =
∑

0<a<Nc

χ (a)z−k F

(−z−1 + a

Nc

)

=
∑

0<a<Nc

χ (a)(F |k Va)

(
z − da

Nc

)

= χ (−1)
∑

a<a<Nc

χ̄ (−da)(F |k Va)

(
z − da

Nc

)
. (3)

Here we use the fact that ada − Nbac = 1 and therefore χ (a)χ (da) = 1.

On the other hand, −da ranges over the elements of {1, . . . , Nc} prime to Nc, as

a ranges over the same set. Hence,

Fχ̄ (z) =
∑

0<a<Nc

χ̄ (−da)F

(
z − da

Nc

)
.

On subtraction from (3) we obtain

(Fχ |k S)(z) − χ (−1)Fχ̄ (z) = χ (−1)
∑

0<a<Nc

χ̄ (−da)qV a

(
z − da

Nc

)
.

�

Theorem 14. Let F be a holomorphic function on h such that, for all
γ ∈ �0(N ), (F |k(γ σa))(z) � e−cy(1 + |x |) as y → ∞, with c and the implied
constant depending on γ . Suppose that for all Dirichlet characters χ, ω

mod(Nc), ψ mod(Nc1)(c, c1 ∈ {1, . . . , N })Fχ,ψ,ω(iy) and Fχ,ψ,ω(iy) decay expo-
nentially as y → ∞ and y → 0. Set

�1(s, χ, ψ, ω) : =
∫ ∞

0

Fχ,ψ,ω(iy)ys−1dy and

�2(s, χ, ψ, ω) : =
∫ ∞

0

Fχ,ψ,ω(iy)ys−1dy.

If, for all γ ∈ �0(N ),

F |k
( [

1 1

0 1

]
− 1

)
(γ − 1) = F |k(γ − 1)

( [
1 1

0 1

]
− 1

)
= 0

and the functional equation

χ (−1)i−k�2(k − s, χ, ψ, ω) − i k�1(k − s, χ̄ , ψ, ω)

= ψ(−1)χ (−1)�2(s, χ, ψ̄, ω) − �1(s, χ̄ , ψ̄, ω)

is true for all characters χ, ψ, ω then F ∈ P S2
k (N ).
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Proof: We see that �1 and �2 converge to analytic functions of s for all s ∈ C. It

follows by the Mellin inversion formula that

1

2π i

∫ σ+i∞

σ−i∞
�1(s, χ, ψ, ω)y−sds = Fχ,ψ,ω(iy),

1

2π i

∫ σ+i∞

σ−i∞
�2(s, χ, ψ, ω)y−sds = Fχ,ψ,ω(iy)

are valid for every σ = Re(s) ∈ R Replace s by k − s and y by 1
y in the above to see

that the functional equation assumed in the theorem implies that

(iy)−kχ (−1)Fχ,ψ,ω

(−1

iy

)
= (iy)−k Fχ̄ ,ψ,ω

(−1

iy

)
+ ψ(−1)χ (−1)Fχ,ψ̄,ω(iy)

−Fχ̄ ,ψ̄,ω(iy).

Since all the functions involved are analytic, this equality is true on the entire upper-half

plane and we can rewrite it in the form[
χ (−1)

∑
0<b<Nc

0<a<Nc1

ω(b)ψ(a)
∑

0<m<Nc

χ (m)F

∣∣∣∣
k

[
mc m(ac − bc1) − c1

Nc2 Nc(ac − bc1)

] ]∣∣∣∣
k

S

−
[ ∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)
∑

0<m<Nc

χ̄ (m)F

∣∣∣∣
k

[
c ac − bc1 + mc1

0 Ncc1

] ]∣∣∣∣
k

S

−χ (−1)ψ(−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ̄(a)
∑

0<m<Nc

χ (m)F

∣∣∣∣
k

[
mc m(ac − bc1) − c1

Nc2 Nc(ac − bc1)

]

+
∑

0<b<Nc
0<a<Nc1

ω(b)ψ̄(a)
∑

0<m<Nc

χ̄ (m)F

∣∣∣∣
k

[
c ac − bc1 − mc1

0 Ncc1

]
= 0.

This is equivalent to

χ (−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)
∑

0<m<Nc

χ (m)F

∣∣∣∣
k

[
1 m

0 Nc

]
S

[
c ac − bc1

0 c1

]
S

−
∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)
∑

0<m<Nc

χ̄ (m)F

∣∣∣∣
k

[
1 m

0 Nc

] [
c ac − bc1

0 c1

]
S

−χ (−1)ψ(−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ̄(a)
∑

0<m<Nc

χ (m)F

∣∣∣∣
k

[
1 m

0 Nc

]
S

[
c ac − bc1

0 c1

]

+
∑

0<b<Nc
0<a<Nc1

ω(b)ψ̄(a)
∑

0<m<Nc

χ̄ (m)F

∣∣∣∣
k

[
1 m

0 Nc

] [
c ac − bc1

0 c1

]
= 0. (4)
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We can further use the definition of Fχ (of Section 3) to write the last equality in the

form:

χ (−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)Fχ

∣∣∣∣
k

S

[
c ac − bc1

0 c1

]
S

=
∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)Fχ̄

∣∣∣∣
k

[
c ac − bc1

0 c1

]
S

−χ (−1)ψ(−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ̄(a)Fχ

∣∣∣∣
k

S

[
c ac − bc1

0 c1

]

+
∑

0<b<Nc
0<a<Nc1

ω(b)ψ̄(a)Fχ̄

∣∣∣∣
k

[
c ac − bc1

0 c1

]
= 0

or,

χ (−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)
(
Fχ

∣∣
k S − χ (−1)Fχ̄

)∣∣
k

[
Nc Nac − Nbc1

0 Nc1

]
S

= χ (−1)ψ(−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ̄(a)
(
Fχ

∣∣
k S − χ (−1)Fχ̄

)∣∣
k

[
Nc Nac − Nbc1

0 Nc1

]
.

Since

[
Nc Nac − Nbc1

0 Nc1

]
=

[
Nc −b

0 1

] [
1 d

0 Nc1

]
we have

∑
0<b<Nc

ω(b)
∑

0<a<Nc1

ψ(a)

((
Fχ

∣∣
k S − χ (−1)Fx̄

)∣∣
k

[
Nc −b

0 1

]) [
1 a

0 Nc1

]
S

=ψ(−1)
∑

0<b<Nc

ω(b)
∑

0<a<Nc1

ψ̄(a)

((
Fχ

∣∣
k S − χ (−1)Fx̄

)∣∣
k

[
Nc −b

0 1

])[
1 a

0 Nc1

]
.

Therefore, by the defining formula for the twist of a function,

∑
0<b<Nc

ω(b)

((
Fχ

∣∣
k
S − χ (−1)Fχ̄

)∣∣∣∣
k

[
Nc −b

0 1

] )
ψ

∣∣∣∣
k

S

= ψ(−1)
∑

0<b<Nc

ω(b)

((
Fχ

∣∣
k
S − χ (−1)Fx̄

)∣∣∣∣
k

[
Nc −b

0 1

] )
ψ̄

.
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By character summation (over characters ω mod(Nc)) we obtain

((
Fχ

∣∣
k
S − χ (−1)Fx̄

)∣∣∣∣
k

[
Nc −b

0 1

])
ψ

∣∣∣∣
k

S

= ψ(−1)

((
Fχ

∣∣
k S − χ (−1)Fx̄

)∣∣∣∣
k

[
Nc −b

0 1

])
ψ̄

for all b ∈ {1, . . . , Nc} with ((b, Nc) = 1).

Now, for a = 1, . . . , Nc, prime to Nc and b = −da > 0, this implies

( ∑
χ (mod Nc)

χ (da)
(
Fχ

∣∣
k
S − χ (−1)Fχ̄

)∣∣∣∣
k

[
Nc da

0 1

] )
ψ

∣∣∣∣
k

S

= ψ(−1)

( ∑
χ (mod Nc)

χ (da)
(
Fχ

∣∣
k S − χ (−1)Fχ̄

)∣∣∣∣
k

[
Nc da

0 1

] )
ψ̄

.

By the usual character summation argument, Lemma 13 then implies that the sum

inside the parentheses equals φ(Nc)qV a , where φ denotes Euler’s function. So the last

equality can be rewritten as

(qVa )ψ |k S = ψ(−1)(qVa )ψ̄ ,

for all Va ∈ Sc.

From (2) (together with our assumption on the periodicity of F |k(γ − 1)’s)

we can then deduce that qV a = F |k Va − F is invariant under �0(N ). Therefore,

F |k(Va − 1)γ = F |k(Va − 1) for all γ ∈ �0(N ). On the other hand, by assumption,

F |k([
1 1

0 1
] − 1)(γ − 1) = 0 for all γ ∈ �0(N ). Now, if F |k(γ1 − 1)(γ − 1) = 0 and

F |k(γ2 − 1)(γ − 1) = 0 for all γ ∈ �0(N ) then F |k(γ1γ2 − 1)(γ − 1) = 0 because

(γ1γ2 − 1)(γ − 1) = (γ1 − 1)(γ2γ − 1) − (γ1 − 1)(γ2 − 1) + (γ2 − 1)(γ − 1).

According to Lemma 12(i), �0(N ) is generated by the Va’s, the translations and

[
−1 0

0 −1
]. Therefore, F satisfies B2.1 and thus by definition, F ∈ P S2

k (N ). �

The following corollary of the proof allows us to distinguish the case that F is a

“trivial” second-order cusp form, that is, a usual cusp form.

Proposition 15. With the assumptions of Theorem 14, the left-hand side of the func-
tional equation vanishes if and only if F is a usual cusp form.

Springer



344 N. Diamantis et al.

Proof: We repeat the first steps of the proof of Theorem 14 up to Eq. (4). The left-hand

side of the functional equation vanishes if and only if

χ (−1)
∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)
∑

0<m<Nc

χ (m)F

∣∣∣∣
k

[
1 m

0 Nc

]
S

[
c ac − bc1

0 c1

]
S

=
∑

0<b<Nc
0<a<Nc1

ω(b)ψ(a)
∑

0<m<Nc

χ̄ (m)F

∣∣∣∣
k

[
1 m

0 Nc

] [
c ac − bc1

0 c1

]
S.

A character summation over ω mod(Nc) and ψ mod(Nc1) together with the definition

of Fχ implies that this is equivalent to Fχ |k S = χ (−1)Fχ̄ for all χ mod(Nc). With

our assumptions, this equality, according to [9], holds if and only if F ∈ Sk(N ). �

5 Periodicity

Let T = [
1 1

0 1
]. In Theorem 14 we had to include the assumption

F |k(γ − 1)(T − 1) = F |k(T − 1)(γ − 1) = 0

for all γ ∈ �0(N ). The second equality is clearly satisfied if F has period 1. In this

section we examine how the imposition of this stronger assumption of periodicity can

affect F .

Indeed, suppose that F |k(T − 1) = 0 and that F |k(γ − 1)(T − 1) = 0 for all γ ∈
�0(N ). Then F |kγ T = F |kγ , so that F is invariant under the group �̃0(N ) generated

by the set of γ T γ −1, γ ∈ �0(N ). It is reasonable to ask whether this invariance implies

the modularity of F , thus making the remaining assumptions of the theorem redundant.

We will show that, for N ≥ 4, this is far from being the case.

Specifically, for

�1(N ) =
{
γ ∈ SL2(Z)

∣∣∣∣ γ ≡
[

1 ∗
0 1

]
mod N

}

set

�̃1(N ) = 〈γ −1T γ |γ ∈ �1(N )〉.

As usual, we identify the groups with their images in PSL(2, Z).

Theorem 16. �̃0(N ) has infinite index in SL(2, Z) for N ≥ 4.
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Proof: It is well-known that, for N ≥ 4, �1(N ) is free and its rank equals

r := 1 + N 2

12

∏
p|N

(
1 − 1

p2

)
. (5)

Next note that �1(N ) � �0(N ) and |�0(N ) : �1(N )| = 1
2
φ(N ) =: ν, say. Let g1 =

1, g2, . . . , gν be a set of coset representatives of �1(N ) in �0(N ).

Observe that

�̃0(N ) = 〈
g−1

i γ −1T γ gi | γ ∈ �1(N ), 1 � i � ν
〉
.

= 〈
g−1

i �̃1(N )gi | 1 � i � ν
〉
.

Set �i (N ) = g−1
i �̃1(N )gi . Because �1(N ) = �̃1(N ) � �1(N ) � �0(N ) then

�i (N ) � �1(N ) for each i , and therefore

�̃0(N ) = �1(N ) . . . �ν(N ) � �1(N ). (6)

Set Ti = g−1
i T gi . We then also have

�i (N ) = 〈γ −1Tiγ |γ ∈ �1(N )〉 = 〈Ti [Ti , γ ]|γ ∈ �1(N )〉

recalling the standard notation [x, y] = x−1 y−1xy.

Now let A be the abelianization of the group �1(N ) i.e. the quotient of �1(N ) by

its commutator subgroup. Because �1(N ) is free then

A ∼= Zr

where r is given by (5). It follows from the second equality in (7) that the image of

each �i (N ) in A is cyclic, being generated by the image of Ti . Hence by (6), the image

of �̃0(N ) in A has rank no greater than ν. If we can show that

r > ν

then it follows immediately that the theorem holds. But this is a triviality: it says that

1 + N 2

12

∏
p|N

(
1 − 1

p2

)
>

1

2
φ(N ) = N

2

∏
p|N

(
1 − 1

p

)
,

that is

2

φ(N )
+ N

6

∏
p|N

(
1 + 1

p

)
> 1,

which is obvious. �

On the other hand, we have
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Proposition 17. For 1 � N � 3, �̃0(N ) = �0(N 2).

Proof: N = 1. We want to prove that �0(1) = �(1) can be generated by γ T γ −1(γ ∈
�(1)). A simple check shows that S = −T 2 P , where P = [

2 1

−1 0
] = [

1 1

−1 0
] T [

1 1

−1 0
]−1.

Since T 2 ∈ �̃0(1), this settles the case N = 1.

N = 2. �0(4) (or, more precisely, its projection onto PSL2(Z)) is generated by

T, P1 = [
−1 0

4 −1
] and P2 = [

1 −1

4 −3
] This can be seen by Lemma 12(i i). However,

P1 P2 = −T −1. Thus, since T −1 ∈ �̃0(2) (obviously), it suffices to prove that P2 ∈
�̃0(2). Indeed,

P2 = −
[

1 0

2 1

]
T

[
1 0

−2 1

]−1

and our result follows for N = 2.

N = 3. By Lemma 12(i i), �0(9) is generated by T, P1 = [
−1 0

9 −1
], P2 = [

2 −1

9 −4
],

P3 = [
5 −4

9 −7
], P4 = [

7 −4

9 −5
], P5 = [

4 −1

9 −2
] and P6 = [

1 0

9 1
]. Since P4 = −P−1

3 , P5 =
−P−1

2 , P6 = −P−1
1 and P1 P2 P3 = T −1 it is sufficient to show that P2 and P3 are

in �̃0(3). Indeed,

P2 = −
[

1 −1

3 −2

]
T

[
1 −1

3 −2

]−1

and P3 = −
[

2 1

3 2

]
T

[
2 1

3 2

]−1

.

�

We also observe that the invariance under �0(N 2) implied by Proposition 17 (when

N = 1, 2, 3) for functions satisfying the assumptions of Theorem 14, in fact implies

modularity for �0(N ). This is a consequence (with �1 = �0(N ), �2 = �0(N 2)) of the

next claim.

Proposition 18. If F satisfies B2.1 for �1 and is invariant under a group �2 with
[�1 : �2] < ∞, then F is invariant under �1.

Proof: Since �2 contains a subgroup of finite index which is normal in �1, we can

assume, without loss of generality, that �2 is normal in �1. Let μ = [�1 : �2]. Then,

for γ ∈ �1, γ
μ ∈ �2 Thus, F |kγ μ − F = 0. On the other hand, F |kγ − F is invariant

under �1, therefore we have:

0 = F |k(γ μ − 1) = F |k(γ − 1)(γ μ−1 + · · · + 1) = μF |k(γ − 1)

for all γ ∈ �1. �

We should finally remark that the discussion of this paragraph applies more gen-

erally to all periodic second-order modular forms and therefore can be carried out

independently of Theorem 14. This is a consequence of
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Proposition 19. Every periodic second-order modular form G on �0(N ) is �̃0(N )-
invariant.

Proof: Let F be a periodic second-order modular form. For all γ, δ, ε ∈ �0(N ) we

have:

F |k(γ δε − γ − δ − ε + 2) = F |k((γ δ − 1)(ε − 1) + (γ − 1)(δ − 1)) = 0.

For δ = T and ε = γ −1 this gives F |k(γ T γ −1 − γ − T − γ −1 + 2) = 0. This, in

turn, in combination with F |k(−γ − γ −1 + 2) = F |k(γ − 1)(γ −1 − 1) = 0 implies

F |k(γ T γ −1 − 1) = 0 for all γ ∈ �0(N ). �

Therefore, we can deduce from Propositions 17 and 18 that, for N = 1, 2, 3, if

F ∈ S2
k (N ) and F(z + 1) = F(z) then F ∈ Sk(N ).

Acknowledgments The authors thank the referee for a careful reading of the paper and suggestions that

substantially improved the exposition.
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