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1. Introduction. In some recent papers (cf. [G2], [O], [CG], [GG],
[DO]) the properties of new types of Eisenstein series are investigated. Mo-
tivated by the abc conjecture, these series were originally introduced by
Goldfeld ([G1], [G3]) in order to study the distribution of modular symbols.
Let f(z) be a fixed cusp form of weight 2 for Γ = Γ0(N), say, the Hecke
congruence group of level N . Then the defining formula for the series is

E∗(z, s) =
∑

τ∈Γ∞\Γ
〈τ, f〉 Im(τz)s,

for z in the upper half-plane H and complex s with Re(s) > 2. Here

Γ∞ =
{(

1 m
0 1

)
: m ∈ Z

}

is the stabilizer of the cusp ∞ and

(1.1) 〈τ, f〉 =
τw0�

w0

f(w) dw

is called a modular symbol . Its definition is independent of w0 in H∗ =
H ∪Q ∪ {i∞}. The function E∗ satisfies the equation

(1.2) E∗(γz, s) = E∗(z, s)− 〈γ, f〉E(z, s) for all γ ∈ Γ
where

E(z, s) =
∑

τ∈Γ∞\Γ
Im(τz)s,

the usual Eisenstein series, satisfies E(γz, s) = E(z, s).
From equation (1.2) and the above it is clear that

E∗(γδz, s)− E∗(γz, s)− E∗(δz, s) + E∗(z, s) = 0 for all γ, δ ∈ Γ.
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The form of this equation motivated us to study functions with similar
transformation properties.

We will work more generally with Γ ⊂ PSL2(R) a Fuchsian group of the
first kind. See the explanation of these in Section 2.3 of [I]. As described there
we may choose a fundamental polygon F to represent Γ\H. We are primarily
interested in groups Γ that contain parabolic elements. The surface Γ\H
will therefore not be compact and F ∩ R̂ will be a finite set of inequivalent
cusps a, b, . . . for R̂ = R ∪ {∞}. For each cusp a we may choose a scaling
matrix σa ∈ SL2(R) that maps the upper part of the strip F∞ = {z ∈ H :
−1/2 ≤ Re(z) ≤ 1/2} to the neighborhood of a in F (and hence σa∞ = a).

Next we define the spaces of functions that we are concerned with. Let
k be a fixed integer. If v is a character of Γ and F a function on H then for
all γ ∈ Γ we set

(F |k,vγ)(z) = v(γ)F (γz)j(γ, z)−k

and extend the action of Γ to Z[Γ ] by linearity. Here j
((∗

c
∗
d

)
, z
)

= cz + d.

Definition I. Let Mk(Γ, v) be the space of maps f : H → C with the
following properties:

(i) f is holomorphic,
(ii) f |k,v(γ − 1) = 0 for all γ in Γ (where 1 stands for the identity

matrix),
(iii) f has at most polynomial growth at the cusps.

The precise meaning of (iii) is that (f |k,vσa)(z)� Im(z)n for each cusp
a and some constant n with z in the upper part of the strip F∞. These
are the modular forms of weight k and character v for Γ . We denote by
M̃k(Γ, v) the space obtained by relaxing (i) to include smooth functions.
The non-holomorphic Eisenstein series are examples. (In this paper ∼ will
always signify a smooth space and its absence a holomorphic space.)

Definition II. In a similar manner we may define the space M̃2
k (Γ, v)

of maps f : H→ C satisfying:

(i) f is smooth,
(ii) f |k,v(γa − 1)(γb − 1) = 0 for all γa, γb in Γ ,
(iii) for each γ in Γ , (f |k,vγ)(z) has at most polynomial growth at the

cusps,
(iv) f |k,v(π − 1) = 0 for all parabolic π in Γ .

It can be shown that E∗(z, s) is an example of such a function, when
k = 0. If we call the holomorphic subspace M 2

k (Γ, v) then we have the
inclusions

Mk(Γ, v) ⊂M2
k (Γ, v) ⊂ M̃2

k (Γ, v), M̃k(Γ, v) ⊂ M̃2
k (Γ, v).
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Remarks. • Condition (iv) in the definition of M̃2
k (Γ, v) was included

to simplify the statements of the results and because the examples we have
in mind so far satisfy it. It also ensures the existence of Fourier expansions
of the functions at each cusp provided v is trivial on the parabolic elements.
• Condition (iii) may be strengthened by replacing polynomial growth

with exponential decay,

(f |k,vσa)(z)� e−c Im(z)

for each cusp a and some constant c > 0 with, as before, z in the upper
part of the strip F∞. We obtain (in an obvious notation) the spaces of
smooth functions S̃k(Γ, v), S̃2

k(Γ, v) and their holomorphic versions Sk(Γ, v)
and S2

k(Γ, v).
• It is also interesting to consider other spaces, for example smooth

functions f such that f |k,v(γ − 1) ∈Mk(Γ, v).

We call elements of M2
k (Γ, v) or M̃2

k (Γ, v) second-order modular forms
and elements of S2

k(Γ, v) or S̃2
k(Γ, v) second-order cuspforms. The names

were suggested by D. Zagier in whose work with P. Kleban on percolation
theory such functions also appear.

In this paper we show that these functions are much more basic in terms
of the usual modular forms than one might think at first. In fact, their role
is analogous to that of Eichler integrals with respect to period polynomials.

Another reason for the interest of second order modular forms is that
the action |k,v induces a natural representation of the abelianization of Γ in
M̃2
k (Γ, v). Indeed, let % : Γ → End(M̃2

k (Γ, v)) be such that %(γ)(f) = f |k,vγ
for all γ ∈ Γ , f ∈ M̃2

k (Γ, v). By definition, f |k,vγδ = f |k,vγ + f |k,vδ − f , so

f |k,vγδ(δγ)−1 = f |k,v(γ + δ − 1)(δγ)−1 = f |k,vδγ(δγ)−1 = f

for all γ, δ ∈ Γ , f ∈ M̃2
k (Γ, v). Similarly for the other spaces of second-order

modular forms we will examine. Thanks to our work in Section 2 we can
then associate such a representation to a usual modular form.

The paper is organized as follows. In Section 2 we determine the structure
of the spaces M̃2

k (Γ, v) and S̃2
k(Γ, v). For example, if g is the genus of Γ\H

then an easy to state corollary of the more precise Theorem 2.3 is

Corollary 2.4. As R-vector spaces we have

M̃2
k (Γ, v) ∼=

2g⊕

i=0

M̃k(Γ, v).

Then we turn to functions that satisfy the more general equation

f |k,v(γ − 1)(δ − 1)(ε− 1) = 0 for all γ, δ, ε ∈ Γ
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rather than f |k,v(γ− 1)(δ− 1) = 0 (γ, δ ∈ Γ ). If the space of such functions
for which f |k,v(γδ − δγ) = 0 is called M̃3

k (Γ, v)ab then a consequence of
Theorem 2.5 is that

M̃3
k (Γ, v)ab

∼=R
(2g+1)(g+1)⊕

i=1

M̃k(Γ, v).

Furthermore, we give a partial description of the class of functions f such
that

f |k,vp(γ, . . .) = 0

where p is an arbitrary polynomial in Z[x1, . . . , xn] with xi non-commuting
variables.

In Section 3 we give an analogous treatment of the subspace of second-
order modular forms that are also eigenfunctions of the Laplacian for a
particular eigenvalue. These second-order Maass forms arise as residues of
the function

E∗(z, s) =
∑

τ∈Γ∞\Γ
|〈τ, f〉|2 Im(τz)s

studied in [G2] for example. It is hoped that a deeper understanding of these
residues will help establish new results about the distribution of modular
symbols.

Finally in Section 4 we show that there is a natural extension of the
definition of Hecke operators that applies to second-order modular forms.
These Hecke operators have the same multiplicativity and commutativity
properties as the usual Hecke operators and hence the Fourier coefficients
of their eigenfunctions have multiplicativity properties analogous to those
of the usual Hecke eigenforms.

2. The structure of M̃2
k (Γ, v). To obtain a description of the structure

of M̃2
k (Γ, v) we use the set of generators of Γ given by Fricke and Klein

in, say, [I]. Specifically, if Γ\H has genus g, r elliptic fixed points and m
cusps, then there are 2g hyperbolic elements γi, r elliptic elements εi and m
parabolic elements πi generating Γ . Furthermore, these generators satisfy
the r + 1 relations:

(2.1) [γ1, γg+1] . . . [γg, γ2g]ε1 . . . εrπ1 . . . πm = 1, ε
ej
j = 1

for 1 ≤ j ≤ r and integers ej ≥ 2. Here [a, b] denotes the commutator
aba−1b−1 of a and b.

Recall the definition of the modular symbol 〈·, ·〉 : Γ ×M2(Γ )→ C given
by formula (1.1). If we take f1 in M2(Γ ) and f2 in S2(Γ ) then the map
Lf1,f2 : Γ → C with

Lf1,f2(γ) = 〈γ, f1 + f2〉+ 〈γ, f1 − f2〉
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is an element of Hom(Γ,C). The Eichler–Shimura isomorphism theorem for
weight 2 (see, for instance, [S, Ch. 8]) states that the map (f1, f2) 7→ Lf1,f2

is actually an R-vector space isomorphism:

M2(Γ )⊕ S2(Γ ) ∼= Hom(Γ,C).

Also if we are only interested in homomorphisms Γ → C that are zero on the
parabolic elements (call this space Hom0(Γ,C)) then the same map gives

S2(Γ )⊕ S2(Γ ) ∼= Hom0(Γ,C).

In particular for any L in Hom0(Γ,C) there exist f, g in S2(Γ ) so that
if we define

(2.2) Λ(z) :=
z�

i∞
f(w) dw +

z�

i∞
g(w) dw

then L(γ) = Λ(γz) − Λ(z) for all γ in Γ and all z in H∗. With the 2g
hyperbolic generators γi we next define corresponding homomorphisms Li
such that Li(γi) = 1 and Li(γ) = 0 for all other generators γ of Γ . Since Li ∈
Hom0(Γ,C), there exist cusp forms fi, gi such that Li(γ) = Λi(γz)− Λi(z)
with

Λi(z) :=
z�

i∞
fi(w) dw +

z�

i∞
gi(w) dw.

Lemma 2.1. For each γ ∈ Γ we have the map f 7→ f |k,v(γ − 1). This
map sends M̃2

k (Γ, v) to M̃k(Γ, v).

The proof follows directly from the definitions of these spaces. In a similar
manner these maps send

M2
k (Γ, v)→Mk(Γ, v), S̃2

k(Γ, v)→ S̃k(Γ, v), S2
k(Γ, v)→ Sk(Γ, v).

Lemma 2.2. For f a second-order modular form we have fk,v(ε−1) = 0
for all elliptic elements of Γ .

Proof. If εn = 1 then

f |k,v(ε− 1) = f |k,v(εn+1 − 1) = f |k,v(ε− 1)(1 + ε+ ε2 + . . .+ εn)

= (n+ 1)f |k,v(ε− 1).

Therefore nf |k,v(ε− 1) = 0 and the lemma is proved.

Theorem 2.3 (Chinese Remainder Theorem). For f in M̃2
k (Γ, v) we let

ψ denote the map sending f to the vector (f |k,v(γ1− 1), . . . , f |k,v(γ2g− 1)).
Then the following sequence of maps is exact :

0→ M̃k(Γ, v) ↪→ M̃2
k (Γ, v)

ψ→
2g⊕

i=1

M̃k(Γ, v)→ 0.
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In other words, for each set {fi : i = 1, . . . , 2g} ⊂ M̃k(Γ, v)2g there is
a h ∈ M̃2

k (Γ, v) (unique up to addition by a form in M̃k(Γ, v)) such that
fi = h|k,v(γi − 1) (i = 1, . . . , 2g), and conversely.

Proof. To prove the exactness of the middle term we observe that if f
is in the kernel of ψ then we must have f |k,v(γ − 1) = 0 for all γ in Γ since
it is true for each of the parabolic, elliptic and hyperbolic generators of the
group. Thus Ker(ψ) = M̃k(Γ, v).

Finally, to prove that ψ is surjective we note that for any vector V =
(f1, . . . , f2g) in

⊕2g
i=1 M̃k(Γ, v) we have ψ(

∑2g
i=1 fiΛi) = V . It is routine

to check that
∑2g

i=1 fiΛi is in M̃2
k (Γ, v). This completes the proof of Theo-

rem 2.3.

The same proof gives the exact sequence

0→ S̃k(Γ, v) ↪→ S̃2
k(Γ, v)

ψ→
2g⊕

i=1

S̃k(Γ, v)→ 0.

For the holomorphic spaces M 2
k (Γ, v) and S2

k(Γ, v) the above proof fails since
Λi(z) is not always holomorphic. In light of this difficulty it is natural to
define the hybrid subspace M̃2

k (Γ, v)∗ ⊂ M̃2
k (Γ, v) of smooth functions that

satisfy
f |k,v(γ − 1) ∈Mk(Γ, v) for all γ ∈ Γ

and similarly for S̃2
k(Γ, v)∗. The proof of Theorem 2.3 then gives

0→ M̃k(Γ, v) ↪→ M̃2
k (Γ, v)∗

ψ→
2g⊕

i=1

Mk(Γ, v)→ 0,

0→ S̃k(Γ, v) ↪→ S̃2
k(Γ, v)∗

ψ→
2g⊕

i=1

Sk(Γ, v)→ 0.

An easy consequence of Theorem 2.3 is

Corollary 2.4. We have the R-vector space isomorphism

M̃2
k (Γ, v) ∼=

2g⊕

i=0

M̃k(Γ, v)

and for any f ∈ M̃2
k (Γ, v) there exist unique hi ∈ M̃k(Γ, v) for 0 ≤ i ≤ 2g

such that

f =
2g∑

i=0

hiΛi

where the functions Λi are as defined earlier and for convenience we set
Λ0(z) = 1. Similar results hold for the spaces S̃k(Γ, v), M̃k(Γ, v)∗ and
S̃k(Γ, v)∗.



Second order modular forms 215

A natural generalization of second-order forms satisfying the transfor-
mation property:

f |k,v(γa − 1)(γb − 1) = 0 for all γa, γb ∈ Γ
in Definition II would be functions satisfying the new condition (ii),

f |k,v(γa − 1)(γb − 1)(γc − 1) = 0 for all γa, γb, γc ∈ Γ.
We might call such functions third-order modular forms and in a consistent
notation write M̃3

k (Γ, v), S̃3
k(Γ, v), etc.

We may characterize third-order modular forms in an analogous way to
Theorem 2.3 but there is an important difference. While it was true for f in
M̃k(Γ, v) or M̃2

k (Γ, v) that f |k,v(γaγb−γbγa) = 0 this is no longer necessarily
the case for third-order modular forms.

If f ∈ M̃3
k (Γ, v) then it is easy to check that the analogs of Lemmas 2.1

and 2.2 are true. In other words M̃3
k (Γ, v)→ M̃2

k (Γ, v) under the map f 7→
f |k,v(γ − 1) for each γ ∈ Γ and f |k,v(ε− 1) = 0 for all elliptic ε ∈ Γ . Define
the map

ψ∗ : M̃3
k (Γ, v)→

(2g)2⊕

i=1

M̃k(Γ, v)

with
ψ∗(f) = (f |k,v(γi − 1)(γj − 1))1≤i,j≤2g.

Set δij = 1 if i = j and zero otherwise. If there exist smooth functions Λij(z)
(with at most polynomial growth at the cusps) satisfying, for 1 ≤ i, j,m, n
≤ 2g,

(2.3) Λij(γmγnz)− Λij(γmz)− Λij(γnz) + Λij(z) = δimδjn

then

0→ M̃2
k (Γ, v) ↪→ M̃3

k (Γ, v)
ψ∗→

(2g)2⊕

i=1

M̃k(Γ, v)→ 0

by essentially the same proof as Theorem 2.3 and

f =
2g∑

i=0

hiΛi +
∑

1≤i,j≤2g

hijΛij

for unique hi, hij∈M̃k(Γ, v). Unfortunately the functions Λij satisfying (2.3)
remain to be found. Without them the above results are not valid.

The products Λi(z)Λj(z) are very close to satisfying (2.3). Their only
defect is that they fail to distinguish between γaγb and γbγa. They do allow
us to prove the following

Theorem 2.5. Let M̃3
k (Γ, v)ab ⊂ M̃3

k (Γ, v) denote the subspace of
third-order modular forms f that satisfy the additional abelian condition
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f |k,v(γaγb) = f |k,v(γbγa) for all γa, γb ∈ Γ . Then

f =
2g∑

i=0

2g∑

j=i

hijΛiΛj for unique hij ∈ M̃k(Γ, v).

Proof. This theorem follows from our above discussion and the formula

Λi(γmγnz)Λj(γmγnz)− Λi(γmz)Λj(γmz)− Λi(γnz)Λj(γnz) + Λi(z)Λj(z)

= ΛiΛj |0,1(γm − 1)(γn − 1) = δimδjn + δjmδin.

To prove this formula we write

Λi(γmz)Λj(γmz)− Λi(z)Λj(z)

= Λi(γmz)(Λj(γmz)− Λj(z)) + (Λi(γmz)− Λi(z))Λj(z)

= δjmΛi(γmz) + δimΛj(z)

and so

δjmΛi(γmγnz) + δimΛj(γnz)− δjmΛi(γmz)− δimΛj(z)

= δjm(Λi(γmγnz)− Λi(γmz)) + δim(Λj(γnz)− Λj(z))

= δjmδin + δimδjn

as required, completing the proof.

These ideas extend to higher order modular forms. More generally if p is
a fixed polynomial in Z[x1, . . . , xn], for non-commuting variables x1, . . . , xn,
consider replacing condition (ii) in Definition II with

f |k,vp(γa, γb, . . .) = 0 for all γa, γb, . . . ∈ Γ.
Simple examples have p(γ) = γn − 1 or p(γa, γb) = γaγb − γa. Label these
spaces M̃k(N, v, p), S̃k(N, v, p), etc. For general polynomials we cannot give
a simple characterization of them. However, some simple propositions may
be proved.

Proposition 2.6. For a fixed p ∈ Z[x1, . . . , xn] we have M̃k(Γ, v) ⊂
M̃k(Γ, v, p) provided M̃k(Γ, v, p) 6= 0.

Proof. For every f ∈ M̃k(Γ, v) we have f |k,vγ = f for all γ ∈ Γ . There-
fore

f |k,vp(γa, . . .) = Af,

where A is the sum of coefficients of p. However, A must be 0 because if
g ∈ M̃k(Γ, v, p) is non-zero, then g|k,vp(γa, γb, . . .) = 0 for all γa, γb, . . . ∈ Γ
and, in particular, for γa = γb = . . . = 1, the identity in Γ .

In the opposite direction we have
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Proposition 2.7. If p has exactly two terms with coefficients summing
to zero then there exists a subgroup Γp of Γ such that f |k,vp(γa, γb, . . .) = 0
for all γa, γb, . . . in Γ if and only if f |k,v(γ − 1) = 0 for all γ in Γp.

Proof. The polynomial p has the form nδ1 − nδ2 with n in Z and δ1, δ2

made up of combinations of elements of Γ . Clearly we may replace p by
δ1 − δ2. Also replacing z by δ−1

2 z we see that the functions f must satisfy
f |k,v(δ1δ

−1
2 − 1) = 0. This is equivalent to f |k,v(γ − 1) = 0 for all γ in the

group generated by elements of the form δ1δ
−1
2 since if f |k,v(γa−1) = 0 and

f |k,v(γb − 1) = 0 then

f |k,v(γaγb − 1) = f |k,v((γa − 1)γb + (γb − 1)) = 0.

This completes the proof.

It would be interesting to characterize M̃k(Γ, v, p) when p is a more
complicated polynomial, for example

p(γa, γb) = (γa − 1)(γb − 1) + (γb − 1)(γa − 1).

3. Second-order Maass cusp forms. For simplicity in the follow-
ing we restrict ourselves to the case k = 0 and v ≡ 1, so we write |
rather than |0,v. In this situation we shall call S̃2

0(Γ, 1) simply A2(Γ\H).
Let ∆ = −4y2∂z∂z be the hyperbolic Laplace operator. We call a function f
in A2(Γ\H) a second-order Maass forms with eigenvalue λ if (∆+ λ)f = 0.
The set of all such functions we denote by A2

λ(Γ\H). Condition (iv) in the
definition of S̃2

0(Γ, 1) implies that any member f has a Fourier expansion at
every cusp. We call f a second-order Maass cuspform if the constant coeffi-
cient of f at each cusp is identically zero. Denote the space of second-order
Maass cuspforms of eigenvalue λ by C2

λ(Γ\H).
To determine the structure of C2

λ(Γ\H) we first fix some notation. We
let L(Γ\H) denote the space of automorphic functions on Γ\H which are
square-integrable with respect to the measure

dµ(z) =
dxdy

y2 , z = x+ iy.

The subspace of automorphic eigenfuctions of the Laplacian with eigenvalue
λ is denoted by Cλ(Γ\H). We also fix orthonormal eigenbases {gi} and {ui}
for S2(Γ ) and Cλ(Γ\H), respectively. These bases are orthonormal with re-
spect to the usual Petersson scalar product

〈g, h〉 :=
�

Γ\H
ykg(z)h(z)dµ(z)

where k is the weight.
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Since the hyperbolic Laplacian is SL2(R)-invariant, it follows that, for
f ∈ C2

λ(Γ\H), the function z 7→ f(γz)− f(z) is in Cλ(Γ\H). Thus, as in the
proof of surjectivity in Theorem 2.3 we can prove

Proposition 3.1. Let f ∈ C2
λ(Γ\H). Then there exist complex constants

{αij} and {βij} such that , for all γ ∈ Γ ,

f(γz) = f(z) +
∑

i,j

uj(z)(αij〈γ, gi〉+ βij〈γ, gi〉).

We now give a characterization of the quotient C2
λ(Γ\H)/Cλ(Γ\H) anal-

ogous to that given in Theorem 2.3.
Let first f be an element of C2

λ(Γ\H). If {αij} and {βij} are the constants
associated to f by Proposition 3.1, define the function

(3.1) f0(z) :=
∑

i,j

uj(z)
(
αij

z�

i∞
gi(w) dw + βij

( z�

i∞
gi(w) dw

))
.

We note that, since we have fixed bases for S2(Γ ) and Cλ(Γ\H), the function

f0(z) = f0(z;λ, {αij}, {βij})
is completely determined by the complex numbers {αij} and {βij} and the
eigenvalue λ.

Lemma 3.2. The function G := f − f0 is in L(Γ\H).

Proof. The automorphicity of G is obvious from (3.1) and Proposi-
tion 3.1. The square integrability follows from the rapid decay of both f
and f0 at the cusps. This completes the proof.

Thus we have characterized the function f in C2
λ(Γ\H) modulo the square

integrable automorphic function G. To go further, we quickly review the
spectral theory of L(Γ\H).

Let
Ea(z, s) =

∑

γ∈Γa\Γ
Im(σ−1

a γz)s

be the real analytic Eisenstein series for Γ associated to the stabilizer Γa

of the cusp a. Then the spectral theorem for L(Γ\H) says that there exists
an orthonormal set of eigenforms η1, η2, . . . with corresponding eigenvalues
λ1, λ2, . . . such that any u ∈ L(Γ\H) has the decomposition

u(z) =
〈u, 1〉
〈1, 1〉 +

∞∑

j=1

〈u, ηj〉ηj(z)(3.2)

+
1

4π

∑

a

∞�

−∞
〈u,Ea(·, 1/2 + ir)〉Ea(z, 1/2 + ir) dr,

where the second sum is over a set of inequivalent cusps.
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Now, with f = f0 −G as above,

0 = (∆+ λ)f(z) = (∆+ λ)(f0 −G)(z)

= −
∑

4y2(αijgi(z)∂zuj(z) + βijgi(z)∂zuj(z))− (∆+ λ)G(z).

Hence (∆+ λ)G = H, say, where

H(z) = H(z;λ, {αij}, {βij})(3.3)

= −
∑

4y2(αijgi(z)∂zuj(z) + βijgi(z)∂zuj(z)).

Expressing both G and H in the form (3.2) and equating the coefficients,
we get

(λ− λj)〈G, ηj〉 = 〈H, ηj〉
and

(λ+ (1/4 + r2))〈G,Ea(·, 1/2 + ir)〉 = 〈H,Ea(·, 1/2 + ir)〉,
for all j, a and r > 0. In particular,

(3.4) 〈H(· ;λ, {αij}, {βij}), η〉 = 0 for all η ∈ Cλ(Γ\H)

and

(3.5) 〈H(· ;λ, {αij}, {βij}), Ea(·, 1/2 + iκ)〉 = 0

for all cusps a, λ = −(1/4 + κ2).

The requirements given in (3.4) and (3.5) impose certain linear relations on
the {αij} and {βij} which must be satisfied.

It turns out that the relation (3.5) always holds:

Proposition 3.3. Let φ ∈ S2(Γ ) and u ∈ Cλ(Γ\H), λ = −(1/4 + κ2).
Then

〈4y2φ∂zu,Ea(·, 1/2 + iκ)〉 = 〈4y2φ∂zu,Ea(·, 1/2 + iκ)〉 = 0.

Proof. Without loss of generality assume a = i∞. Also choose s with
Re(s) > 3. Let

Φ(z) :=
z�

i∞
φ(w) dw

be an antiderivative of φ. Note that (∆ + λ)(uΦ) = −4y2φ∂zu. Unfolding
the integral, we obtain

−4〈y2φ∂zu,Ea(·, s)〉 = 〈(∆+ λ)(uΦ), Ea(·, s)〉

=
∞�

0

1�

0

(∆+ λ)(u(z)Φ(z))ys
dx dy

y2 .
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Integrate by parts twice. The fact that the real part of s is sufficiently large
ensures that the boundary terms vanish, leaving us with

−4〈y2φ∂zu,Ea(·, s)〉 =
∞�

0

1�

0

u(z)Φ(z)(∆+ λ)ys
dx dy

y2 .

The proof is completed by analytically continuing to s = 1/2+ iκ, and using
the fact that (∆+ λ)y1/2+iκ = 0.

Conversely, given complex constants {αij} and {βij} satisfying (3.4), we
can construct a function f ∈ C2

λ(Γ\H)/Cλ(Γ\H). We first setH := (∆+λ)f0,
where f0(z) is the function associated to {αij}, {βij} by (3.1). Thanks to the
relation (3.4), there exists a function G ∈ L(Γ\H) such that H := (∆+λ)G.
This function is well-defined modulo Cλ(Γ\H). It follows that f := f0 − G
is an element of C2

λ(Γ\H). Furthermore, any two functions f ∈ C2
λ(Γ\H)

associated to the complex constants {αij} and {βij} as above must differ
by a Maass form in Cλ(Γ\H).

It is easy to see that the mappings defined in this way are linear and
inverse to one another.

Let M = 2 dim(S2(Γ )) dim(Cλ(Γ\H)). We have shown

Theorem 3.4. As an R-vector space, C2
λ(Γ\H)/Cλ(Γ\H) is isomorphic

to

{(αij , βij) ∈ CM : 〈H(· ;λ, {αij}, {βij}), η〉 = 0 for all η ∈ Cλ(Γ\H)}.
In particular, dim C2

λ(Γ\H) ≤ (2 dimS2(Γ ) + 1) dim(Cλ(Γ\H)). It would
be desirable to also find a strong lower bound for dim C2

λ(Γ\H).

4. Hecke operators. Using the above description of the structure of
M̃2
k (Γ, v), we can define operators on it that are compatible with the usual

Hecke operators on M̃k(Γ, v). We restrict ourselves to the case Γ = Γ0(N),
the Hecke congruence group of level N (where we have identified ±1). The
character v is induced by a character on (Z/NZ)∗. In the following we will
just indicate the level N instead of writing the full group Γ0(N).

According to Section 2, any f in M̃2
k (N, v) can be uniquely written in

the form

f(z) =
2g∑

i=0

hi(z)Λi(z)

for unique hi in M̃k(N, v). We then naturally define

(4.1) (Tnf)(z) :=
2g∑

i=0

(Tnhi)(z)Λi(z)
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where the Tn is the usual Hecke operator on M̃k(N, v) given by the formula

Tng := nk−1
∑

ad=n

∑

b (mod d)

v(d)d−kg
(
az + b

d

)
.

Obviously the maps given by (4.1) map M̃2
k (N, v) to M̃2

k (N, v) and coincide
with the usual Hecke operators on M̃k(N, v) ⊂M2

k (N, v).
It is possible to define other Hecke operators on these second-order

spaces. For examples of such alternative operators in the special case of
Eisenstein series formed with modular symbols and related functions,
see [DO].

There is nothing special about the Λi functions used in the defini-
tion (4.1). If L′i with 1 ≤ i ≤ 2g is any basis for Hom0(Γ,C) then there
exist Λ′i functions as in (2.2) such that L′i(γ) = Λ′i(γz) − Λ′i(z) for all γ in
Γ . Also set Λ′0 = Λ0 = 1.

Proposition 4.1. For f =
∑2g
i=0 hiΛi =

∑2g
j=0 h

′
jΛ
′
j we have

2g∑

i=0

(Tnhi)Λi =
2g∑

j=0

(Tnh′j)Λ
′
j .

Proof. We express the linear dependence of Λ′j and Λi by writing

Λ′j =
∑

i

αijΛi.

Thus

f =
2g∑

i=0

hiΛi =
2g∑

j=0

h′jΛ
′
j =

2g∑

i,j=0

αijh
′
jΛi

so that hi −
∑

j αijh
′
j = 0. Now

∑

i

(Tnhi)Λi −
∑

j

(Tnh′j)Λ
′
j =

∑

i

(Tnhi)Λi −
∑

i,j

(Tnh′j)αijΛi

=
∑

i

(
(Tnhi)−

∑

j

αij(Tnh′j)
)
Λi

=
∑

i

(
Tn

(
hi −

∑

j

αijh
′
j

))
Λi = 0

as required, completing the proof.

It is obvious that these Hecke operators Tn ((n,N) = 1) inherit the
multiplicativity properties of the usual Hecke operators. Furthermore, it
is possible to give a simple characterization of the effect of Tp’s (p prime
not dividing N) on the Fourier coefficients of a holomorphic f ∈ S̃2

k(N, v).
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Specifically, suppose that

f(z) =
∑

j

fj(z)
z�

i∞
gj(w) dw

for some fj ∈ Sk(N, v), gj ∈ S2(N). If

fj(z) =
∞∑

m=1

aj(m)e2πimz, gj(z) =
∞∑

m=1

cj(m)e2πimz

then

f(z) =
1

2πi

∑

m

(∑

n

∑
j aj(m− n)cj(n)

n

)
e2πimz .

Therefore, for every prime p such that (p,N) = 1,

Tpf(z) =
1

2πi

∑

m

(∑

n

∑
j ãj(m− n)cj(n)

n

)
e2πimz

where ãj(l) = aj(pl) + pk−1aj(l/p) (with aj(α) := 0 if α 6∈ Z) is the lth
Fourier coefficient of Tpfj(z).

This implies, in particular, that if f is an eigenfunction of Tp with eigen-
value λp, then ∑

j

aj(p)cj(1) = λp
∑

j

aj(1)cj(1).

It should finally be noted that in a similar manner we could construct
operators induced by the Atkin–Lehner operators Uq (q |N) for which an
analogous discussion applies.
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