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1. Introduction

In [G1], [G2], the distribution of modular symbols is studied and a new class
of functions which satisfy a transformation law involving these objects is in-
troduced. The goal of Goldfeld’s program is to prove Szpiro’s conjecture which
states that for elliptic curveswithminimal discriminantD and conductorN there
is an absolute constantκ such thatD � Nκ . To do this, an equivalent conjec-
ture involving modular symbols is established in [G4] using the, now proven,
conjecture of Shimura, Taniyama andWeil. It seems that a sufficiently good un-
derstanding of the new series proposed by Goldfeld should yield a resolution of
these conjectures. We repeat here their definition in a somewhat more general
form to include period polynomials rather than modular symbols only.

For positive integersM,N such thatM|N, letm, k be non-negative integers
such thatm ≥ k − 2 ≥ 0 and letχ be a Dirichlet character moduloN. First,
for eachf ∈ Sk(M) = {holomorphic cusp forms of weightk and levelM} we
denote byrf the map which sendsγ ∈ Γ0(M), the Hecke congruence group of
levelM, to the polynomial function:

rf (γ )(z) :=
∫ γ−1i∞

i∞
f (w)(w − z)k−2dw.

We then consider the functionsG∗ on the upper-half planeH of polynomial
growth at the cusps such that forf ∈ Sk(M) andG ∈ Mm(N, χ) = {modular
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forms (not necessarily analytic) of weightm for levelN and associated character
χ} we have:

(G∗|m−(k−2),χγ )(z) = G∗(z)+ rf (γ )(z)G(z)

or, in a more compact notation,

G∗|m−(k−2),χ (γ − 1) = rf (γ ) ·G for all γ ∈ Γ0(N), z ∈ H. (1)

As usual the ‘slash’ operator|n,χ is defined by the formula
(Q|n,χ ( ∗ ∗

c d ))(z) := χ̄(( ∗ ∗
c d ))Q(γ z)(cz+ d)−n det(( ∗ ∗

c d ))
n/2

and whenχ is trivial we write |n. Each of these functions can be expressed
essentially as a sum of Poincar´e series shifted by a modular symbol (cf. [G1]).

In this work, we introduce Hecke operators on series formed with modu-
lar symbols which are natural with respect to the structure of the spaces these
functions comprise and we study their effect on several associated objects.

In section 2 we view series formed with modular symbols as a kind of gen-
eralized modular integral and we apply Knopp’s Hecke operators for modular
integrals, denoted byTp with (p,N) = 1, to them. For holomorphic series
formed with modular symbolsG∗ that vanish at the cusps, we describe the effect
of the operatorsTp on a certain family of polynomials and demonstrate a relation
with values ofL-functions ofG∗. This is analogous to the relation of the period
polynomial to values ofL-functions of the usual cusp forms.

In sections 3 and 4 the action of the Hecke operators on non-holomorphic
Eisenstein series formed with modular symbols, i.e.

E∗(z, s; f ) = E∗(z, s) :=
∑

τ∈Γ∞\Γ
rf (τ )(z)Im(τz)

s,

is examined in detail. A description of the basic properties of these functions
(for f ∈ S2(M) and holomorphic), including their meromorphic continuation,
functional equation, poles and residues, was initiated in [G1], and completed
by the second author in [O’S1] using a generalization of Selberg’s method for
the analytic continuation of Eisenstein series. These results have been used by
Goldfeld to prove some first theorems on the distribution of modular symbols
(cf. [G2]). In this case, the effect of the Hecke operatorsUq with q | N , (in the
notation ofAtkin and Lehner [AL]) onE∗ yields an interesting relation involving
Rankin-SelbergL-functions when we consider the action on the residues of the
poles ofE∗. As an application of this an orthonormal basis for the spaces of
oldforms and newforms coming from a single Maass form on the full modular
group is constructed.

InSection5, somealternativeHeckeoperators aregivenwhichare compatible
with different definitions of the space in which our functionsG∗ can be thought
of as belonging.Although these operators do not behave as naturally with respect
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to the analogue of the period polynomial as the first one discussed here, they are,
in some cases, better suited to carrying over toG∗ the eigenproperties of the
cusp form to which the modular symbol is associated. Thus, depending on the
applications, either type of Hecke operator may be used.

Finally, we should remark that our work can also be understood in terms
of a more general project attempting a study of objects associated to modular
forms, such asL-functions, periods etc., using the action of the relevant group
by |k for varying indexk and, consequently, the corresponding cohomology. This
viewpoint has already been applied by the first author in the investigation of the
derivatives ofL-functions of (usual) cusp forms (cf. [D1], [D2]) and earlier, by
other authors, in the study of modular integrals, rational period functions etc. (cf.
[K], [A], [CZ], [G3] etc.)

The authors would like to thank D. Goldfeld, S. Wolpert and D. Zagier for
their helpful suggestions and advice in the writing of this paper. This work
was completed while the first author was a guest at Max-Planck-Institut f¨ur
Mathematik in Bonn in the framework of the program Training and Mobility of
Researchers.

2. Hecke operators andL-functions

We recall that a rational period function of weightk ≥ 0 forSL2(Z) is a rational
functionq such that:

q + q|kT = q + q|kU + q|kU2 = 0 where T = ( 0 −1
1 0 ), U = ( 1 −1

1 0 ).

Also, a modular integral of weightk is a meromorphic functionF on the upper-
half planeH of polynomial growth at the cusps such that:F |kS = F andF |kT =
F + q for q a rational function andS := ( 1 1

0 1). It is easy to see thatq will then
be a period function.

Because of (1), in the special case thatN = 1 the functions defined in
the Introduction can be considered as modular integrals associated to period
functions which are no longer rational but rather smooth with polynomial growth
at thecusps.Motivatedby thisobservationwestudyfirst theeffectKnopp’sHecke
operators for modular integrals (see [K]) have on our functions.

With the notation used in the Introduction, we setn := m − (k − 2) and
consider the spaceN of smooth functions onH with polynomial growth at the
cusps. We letΓ0(N) act onN from the right by|n and we denote byd the
coboundary operator from the 0-cochains to the 1-cochains (with respect to the
‘bar’-resolution). Knopp’sHeckeoperators onmodular integralsTp for (p,N) =
1, in the formulation of [CZ], is given by the element ofZ[Mp] (whereMl :=
{M ∈ M2(Z); det (M) = l}):

Tp :=
∑
M∈∆p

M where∆p := {( a b0 d ) : ad = p, a > 0,0 ≤ b < d}.
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Thus we set:
TpG

∗ := G∗|nTp.
SincedTp = Tpd, where theTp on the right denotes the Hecke operator on
1-cocycles (cf. [S], Ch. 8), we have

(TpG
∗)|n(γ − 1) = Tp(rf ·G)(γ ) for all γ ∈ Γ0(N).

We return to the caseN = 1. Sincerf (S) ·G = 0, the fact thatrf (γ ) ·G ∈ N
satisfies a 1-cocycle condition is equivalent torf := rf (T ) · G ∈ N being
annihilatedbyT+1andU2+U+1.UsingKnopp’sHeckeoperators asdescribed
in [CZ], we can give an explicit formula for the period function associated to
TpG

∗ in terms ofrf .

Proposition 1 [CZ]. LetTp andMl be as above and letJ denote the right ideal
(1+T )Z[M1]+ (1+U +U2)Z[M1] ofZ[M1]. Then, there areXp, Yp ∈ Z[Mp]
such that(i)XpJ ⊂ JZ[Mp] and (ii)Tp(T − 1) = (T − 1)Xp + (S − 1)Yp.
Moreover an example of such anXp is given, namelyXp := ∑

M∈MM where
M = {( a bc d ) ∈ Mp such thata > |c|, d > |b|, bc ≤ 0, c = 0 �⇒ −d/2 <
b ≤ d/2, andb = 0 �⇒ −a/2< c ≤ a/2}.

In amanner completely analogous to theapplicationof that theoremdiscussed
in [CZ], we have:

(TpG
∗)|n(T − 1) = (G∗|nTp)|n(T − 1) = G∗|n(T − 1)|nXp +G∗|n(S − 1)|nYp

= rf |nXp
(since, as it is easy to see,G∗|nS = G∗) and because of part (i) of the theorem,
rf |nXp is a period function too.

We study next how theseHecke operators interact with the analogue of period
polynomials for those of our functions which are holomorphic and vanish at the
cusps (see [G1]). To do that we quickly recall the definition of theL-function as-
sociated to series formedwithmodular symbolsG∗ (see [G1]). For the remainder
of Section 2 we shall assume thatm ≥ k.

LetG∗ have a Fourier expansion (ati∞) of the form

G∗(z) =
∞∑
n=1

a(n)e(nz).

In [G1] it is proven that

LG∗(s) :=
∞∑
n=0

a(n)

ns

converges absolutely fors in some right half-plane and that it can be expressed
in terms of the inverse Mellin transform:∫ ∞

0
G∗(iy)ys−1dy = Γ (s)(2π)−sLG∗(s).
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The proof is identical with that of the case of cusp forms because the key property
used is the exponential decay at the cusps which holds also forG∗. This equation
enables us to extendLG∗ to an entire function. More generally, theL-function
ofG∗ twisted by an exponential character can be expressed in terms of integrals
of the form

∫∞
x
G∗(iy)(y − x)s−1dy with x ∈ Q.

It is then natural to define the map sending an elementγ of Γ0(N) to the
polynomial:

σ(γ ) :=
∫ γ−1i∞

i∞
G∗(z)(z−X)n−2dz

wheren = m− (k− 2) ≥ 2.WhenN = 1, the coefficients ofσ(T ) are explicit
linear combinations of values ofLG∗(s) inside the critical strip (as is the case for
the period polynomial as well).

Proposition 2. LetG∗ be a holomorphic function onH which vanishes at the
cusps and satisfies equation (1) for somef ∈ Sk(1) andG ∈ Sm(1). Then,

σ(T ) =
n−2∑
j=0

(
n− 2

j

)
(−1)j−1j !

(
i

2π

)j+1

LG∗(j + 1)Xn−2−j .

Proof.By the definition (and binomial expansion):

σ(T ) =
n−2∑
j=0

(
n− 2

j

)
(−1)j

(∫ 0

i∞
G∗(z)zjdz

)
Xn−2−j .

The result is obtained by this formula and the expression ofLG∗ in terms of the
inverse Mellin transform fors = j + 1. ��

More generally, the coefficients ofσ(g), for anyg ∈ Γ0(N) are linear combi-
nations of values of the twisted (by an exponential)L-function. Themap satisfies
a 1-cocycle condition with respect to the usual action|2−n of Γ0(N) on the poly-
nomials of degree≤ n− 2 “modulo linear combinations of products of periods
of f andG". We recall that the period of a weightk cusp formg for Γ0(N) is an
integral

∫ i∞
0 g(z)zjdz for j ∈ {0, . . . , k − 2}.

Specifically,

Proposition 3.For all γ1, γ2 ∈ Γ0(N) we have:
σ(γ2γ1) = σ(γ2)|2−nγ1 + σ(γ1)

+
(∫ γ−1

2 i∞

i∞
rf (γ

−1
1 )(z)G(z)(z−X)n−2dz

)
|2−nγ1.
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Proof.By the equality(z− γ1X)j (γ1, X) = (γ−1
1 z−X)j (γ−1

1 , z) and equality
(1), we obtain:

σ(γ2)|2−nγ1 =
∫ γ−1

2 i∞

i∞
G∗(z)(z− γ1X)

n−2j (γ1, X)
n−2dz

=
∫ γ−1

2 i∞

i∞
G∗(γ−1

1 z)(γ−1
1 z−X)n−2d(γ−1

1 z)

−
∫ γ−1

2 i∞

i∞
rf (γ

−1
1 )(z)G(z)(γ−1

1 z−X)n−2j (γ−1
1 , z)n−2dz

Bya change of variables, we observe that the first integral equalsσ(γ2γ1)−σ(γ1)
and this completes the proof.��

This formula implies thatσ is determined by its values at the generators
of Γ0(N) and by the (usual) periods ofG andf . In particular, forN = 1, it
is determined (“modulo products of usual periods") by its value atT , (since
σ(( 1 1

0 1)) = 0), so this value can be considered as the analogue of the period
polynomial.

Inorder tocharacterize theeffect of theHeckeoperatorofG∗ on theassociated
mapσ , we need a easy generalization of Proposition 1 forΓ0(N) (N ≥ 1).

Lemma 4.Let{γ1, . . . , γr} be a set of generators ofΓ0(N). For everyγ ∈ Γ0(N)
there areX1, . . . , Xr ∈ Z[Mp] such that

Tp(γ − 1) = (γ1 − 1)X1 + · · · + (γr − 1)Xr.

Proof.For eachM ∈ ∆p, there is aγM ∈ Γ0(N) and a (unique)M̂ ∈ ∆p such that
MγM̂−1 = γM (cf. [S], Prop. 3.36). Therefore,Tp(γ −1) = ∑

M(γMM̂−M) =∑
M(γM − 1)M̂. The lemma follows by this equality and the observation that,

for all γ ∈ Γ0(N), γ − 1 ∈ (γ1 − 1)Z[M1] + · · · + (γr − 1)Z[M1]. (If γ
satisfies this property, then fori = 1, . . . , r, γiγ − 1 = (γi − 1)γ + (γ − 1),
γ−1
i γ −1 = (γi −1)(−γ−1

i γ )+ (γ −1) and the fact follows by induction.)��
Theorem 5.With the above notation, letG∗ be a holomorphic function onH
which vanishes at the cusps and satisfies equation (1) for somef ∈ Sk(M) and
G ∈ Sm(N). Then, for allγ ∈ Γ0(N) andp such that(p,N) = 1we have,

σTpG∗(γ ) =
∑
i

σG∗(γi)|2−nXi + P

wheren := m − (k − 2) and P is a polynomial of degree≤ n − 2 whose
coefficients are rational combinations of products of periods ofG andf.
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Proof.We setsG∗(τ ) = ∫ i∞
τ
G∗(z)(z− τ)n−2dz. Then, we have

(sG∗ |2−n(γ − 1))(τ ) =
∫ γ (γ−1i∞)

γ τ

G∗(z)(z− γ τ)n−2j (γ, τ )n−2dz− sG∗(τ ),

and this, by a change of variables in the first integral, equals∫ γ−1(i∞)

τ

(G∗|nγ )(z)(z− τ)n−2dz−
∫ i∞

τ

G∗(z)(z− τ)n−2dz

= σG∗(γ )+
∫ γ−1(i∞)

τ

rf (γ )(z)G(z)(z− τ)n−2dz

because(γ z − γ τ)j (γ, z)j (γ, τ ) = z − τ. SinceTp(rf · G)(γ ) is the period
function corresponding toTpG∗, this also implies:

(sTpG∗ |2−n(γ − 1))(τ ) = σTpG∗(γ )+
∫ γ−1(i∞)

τ

Tp(rf ·G)(γ )(z)(z− τ)n−2dz.

(2)
Moreover, by Lemma 4, we have that

Tp(rf G)(γ ) = (TpG
∗)|n(γ − 1) = G∗|nTp|n(γ − 1)

=
∑
i

G∗|n((γi − 1) ·Xi) =
∑
i

(rf (γi) ·G)|nXi.

Hence equality (2) can be written in the form:

(sTpG∗ |2−n(γ − 1))(τ ) = σTpG∗(γ )

+
∑
i

∫ γ−1(i∞)

τ

((rf (γi) ·G)|nXi)(z)(z− τ)n−2dz.

By definition,

sTpG∗(τ ) = pn/2
p∑
i=0

∫ i∞

τ

G∗(αiz)j (αi, z)−n(z− τ)n−2dz.

However, for allM ∈ GL2(R),

(z−Mτ)j (M, τ) = det (M)(M−1z− τ)j (M,M−1z)−1 andd(M−1z)

= det(M−1)dz

j (M−1, z)2
(3)

so, by a change of variables in each of the integrals, we eventually see that

sTpG∗(τ ) = pn/2−1−(n−2)
p∑
i=0

∫ i∞

αiτ

G∗(z)j (αi, z)n−2(z− αiτ )
n−2dz

= (sG∗ |2−nTp)(τ ).
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Putting all these equalities together, we obtain:

σTpG∗(γ ) = (sTpG∗ |2−n(γ − 1))(τ )

−
∑
i

∫ γ−1i∞

τ

((rf (γi) ·G)|nXi)(z)(z− τ)n−2dz

= (sG∗ |2−nTp(γ − 1))(τ )−
∑
i

∫ γ−1(i∞)

τ

((rf (γi) ·G)|nXi)(z)(z− τ)n−2dz.

Using Lemma 4 once more, the last sum becomes:

r∑
i=1

(sG∗ |2−n(γi−1)|2−nXi)(τ )−
∑
i

∫ γ−1i∞

τ

((rf (γi)·G)|nXi)(z)(z−τ)n−2dz or

r∑
i=1

σG∗(γi)|2−nXi +
∑
i

(∫ γ−1
i i∞

τ

rf (γi)(z)G(z)(z− τ)n−2dz

)
|2−nXi

−
∑
i

∫ γ−1(i∞)

τ

((rf (γi) ·G)|nXi)(z)(z− τ)n−2dz (4)

Now we observe that for eachi, if Xi = ∑
M ∈ Z[Mp], then

∫ γ−1(i∞)

τ

((rf (γi) ·G)|nXi)(z)(z− τ)n−2dz =
∑
M

∫ γ−1i∞

τ

rf (γi)(Mz)G(Mz)(z− τ)n−2j (M, z)−np
n
2dz.

Because of (3), this equals,

∑
M

p1− n
2

∫ γ−1i∞

τ

rf (γi)(Mz)G(Mz)(Mz−Mτ)n−2j (M, τ)n−2d(Mz)

or, by a change of variables,

∑
M

(∫ Mγ−1i∞

τ

rf (γi)(z)G(z)(z− τ)n−2dz

)
|2−nM.

Therefore sum (4) equals,

r∑
i=1

σG∗(γi)|2−nXi +
r∑
i=1

∑
M

(∫ γ−1
i i∞

Mγ−1i∞
rf (γi)(z)G(z)(z− τ)n−2dz

)
|2−nM.
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Since rf (γ )(z)G(z) = ∑k−2
j=0

(
k−2
j

)
(−1)j zjG(z)

∫ γ−1i∞
i∞ f (w)wk−2−j dw the

double sum is a polynomial whose coefficients are linear combinations of prod-

ucts of the form:(
∫ β
α
G(z)zidz)(

∫ γ−1i∞
i∞ f (w)zjdz)with 0 ≤ i ≤ n−2+k−2 =

m−2 and 0≤ j ≤ k−2 andα, β ∈ Q. Such integrals can be written as rational
linear combinations of periods (cf. [M]). From this the desired result follows.
��
Corollary 6. Letf ∈ Sk(SL2(Z)) andG ∈ Sm(SL2(Z)). Then we have,

σTpG∗(T ) = σG∗(T )|2−nXp + P

wheren := m − (k − 2) and P is a polynomial of degree≤ n − 2 whose
coefficients are rational combinations of products of periods ofG andf.

Proof.SinceσG∗(S) = 0, this follows from the proof of Theorem 5 (forγ = T )
where rather than using Lemma 4 we use Proposition 1.��

The same results hold for primesp forp | N with Tp replaced by the operator
Up := ∑p−1

i=0 (
1 i
0 p ). The reason for this is that (as in the case ofTp) for all

γ ∈ Γ0(N) andi = 0, . . . , p − 1, there is a uniquej ∈ {0, . . . , p − 1}, such
that( 1 i0 p )γ (

1 j
0 p )

−1 ∈ Γ0(N).

3. Eisenstein series formed with modular symbols and the operatorsTp

LetΓ = Γ0(N) be the Hecke congruence group of levelN . In [G1], [O’S1] the
non-holomorphic Eisenstein series

E∗(z, s; f ) = E∗(z, s) :=
∑

τ∈Γ∞\Γ
rf (τ )(z)Im(τz)

s (5)

is studied in the special case thatf is a weight 2 holomorphic cusp form. In that
caserf (τ )(z) = rf (τ ) = 〈 τ, f 〉/(2πi) is a modular symbol. As can be readily
verified, for a fixeds, E∗(·, s) satisfies (1) withχ = 1, m = k − 2 = 0 and
G(z) = E(z, s) = ∑

τ∈Γ∞\Γ Im(τz)
s , the usual automorphic non-holomorphic

Eisenstein series. The series(5) converges to a holomorphic function ofs for
Re(s) > 2. As a function ofz it is an eigenfunction of the hyperbolic Laplacian
∆ = −y2( ∂2

∂x2
+ ∂2

∂y2
) and is real-analytic. In [O’S2] it is shown thatE∗ has a

meromorphic continuation to the entires-plane anda functional equation relating
values ats to those at 1− s. In [O’S1] and work to appear it is also shown that
E∗ has simple poles on the critical line Re(s) = 1/2.

In this section we examine the effect the Hecke operators have on such series
and derive a relation for the values of certain convolutionL-functions at special
points. We fix, once and for all, a weight 2 holomorphic newformf (z) for Γ .
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This implies thatf is an eigenfunction of the Hecke operatorsTp for primes
p � N andUq for primesq | N . If f has Fourier expansion

f (z) =
∞∑
n=1

a(n)e(nz) (6)

then we may normalizef to havea(1) = 1. In that caseTpf = a(p)f and
Uqf = a(q)f . As is well known, the coefficientsa(n) have the following mul-
tiplicative properties:

a(pr)a(p) = a(pr+1)+ a(pr−1)p if p � N,

a(pr) = a(p)r if p | N,
and a(m)a(n) = a(mn) if (m, n) = 1.

Thus in particular we have the formula

a(pn) = a(p)a(n)−
{
a(n/p)p if p | n andp � N
0 if p � n or p | N . (7)

Also it is known thata(p) = 0 if p2 | N anda(p) = ±1 if p | N andp2 � N .
We next set

Ff (z) = F(z) =
∫ z

i∞
f (w) dw,

the antiderivative off . The Hecke operators act naturally on the ‘automorphic
part’ of our function

Q∗(z, s; f ) =
∑

τ∈Γ∞\Γ
F (τz)Im(τz)s = E∗(z, s)+ F(z)E(z, s),

where it is clear thatQ∗ is automorphicwithweight zero.Toprove theproposition
describing the effect ofTp onQ∗, we need the following two lemmas.

Lemma 7.For each primep such thatp � N we haveTpF := F |0Tp = a(p)F .

Proof.

TpF (z) =
∑
ρ∈∆p

∫ ρz

i∞
f (w) dw =

∑
ρ

∫ ρz

ρi∞
f (w) dw

=
∑
ρ

∫ z

i∞
f (ρw) dρw =

∫ z

i∞

[
Tpf (w)

]
dw = a(p)F (z). ��

Note that ifq | N thenUqF := F |0Uq = a(q)F by the same proof.
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Lemma 8.LetHN be a set of representatives ofΓ∞\Γ0(N). Then, for each prime
p with (N, p) = 1we have the equality⋃

ρ∈∆p
τ∈HN

Γ∞τρ =
⋃
ρ∈∆p
τ∈HN

Γ∞ρτ

where the cosets on the left and right are disjoint.

Proof.We first prove that
⋃

ρ∈∆p
τ∈HN

Γ∞ρτ ⊂ ⋃
ρ∈∆p
τ∈HN

Γ∞τρ. For eachτ ∈ Γ0(N)

there is a uniquẽρ ∈ ∆p such thatρτ ρ̃−1 ∈ Γ0(N) (see [S], Prop. 3.36). Then,
ρτ ρ̃−1 will equal Snτ ′ for somen ∈ Z, τ ′ ∈ HN, whereS is the generator of
Γ∞, i.e.Γ∞ρτ ⊂ ⋃

ρ∈∆p
τ∈HN

Γ∞τρ.

Conversely, letτ ∈ HN andρ ∈ ∆p. Then there is ann ∈ Z and ρ̃ ∈ ∆p
such thatρ̃−1Snτρ ∈ Γ0(N). Thisn can be found as follows. Ifp | c, then(

1 0
0 p

)−1(
a b

c d

)(
1 i
0 p

)
=
(
a ai + bp
c
p

c
p
i + d

)
∈ Γ0(N) and

(
p 0
0 1

)−1(
1 n
0 1

)(
a b

c d

)(
p 0
0 1

)
=
(
a + nc b+nd

p

pc d

)
∈ Γ0(N)

for anyn ∈ Z such thatp|(b + nd). If p � c, then(
p 0
0 1

)−1(
1 n
0 1

)(
a b

c d

)(
1 i
0 p

)
=
(
a+nc
p

a+nc
p
i + b + nd

c ci + dp

)
∈ Γ0(N)

for n with p|a + nc and(
1 0
0 p

)−1(
a b

c d

)(
p 0
0 1

)
=
(
pa b

p d
p

)
∈ Γ0(N), if p|d, or

(
p 0
0 1

)−1(
1 n
0 1

)(
a b

c d

)(
p 0
0 1

)
=
(
a + nc b+nd

p
i + b + nd

pc d

)
∈ Γ0(N)

for anyn with p|b + nd if p � d. Hence,Γ∞τρ ⊂ ⋃
ρ∈∆p
τ∈HN

Γ∞ρτ. ��

We are now ready to prove

Proposition 9.Setfp(z) := pf (pz) then for each primep not dividingN

TpQ
∗(z, s) = a(p)p−sQ∗(z, s)+ (ps − p−s)Q∗(z, s; fp).

Proof.

TpQ
∗(z, s) =

∑
ρ∈∆p

∑
τ∈Γ∞\Γ

F (τρz) Im(τρz)s

=
∑
ρ

∑
τ

F (ρτz) Im(ρτz)s
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Note that Im(ρz) = 1
p
Im(z) for eachρ = (

1 i
0 p

) and Im((
p 0
0 1

)z) = p Im(z). So

we obtain

TpQ
∗(z, s) = ps

∑
τ

(
F(pτz)+ p−2s

(∑
ρ

F (ρτz)− F(pτz)

))
Im(τz)s

= ps
∑
τ

(
F(pτz)

(
1− p−2s

)+ p−2s
∑
ρ

F (ρτz)

)
Im(τz)s

= ps
∑
τ

(
F(pτz)

(
1− p−2s

)+ p−2sa(p)F (τz)
)
Im(τz)s

= (ps − p−s)
∑
τ

F (pτz)Im(τz)s + a(p)p−sQ∗(z, s).

Noting that ∫ z

i∞
pf (pw) dw =

∫ pz

i∞
f (w) dw = F(pz)

completes the proof. ��
As we remarked earlierE∗ has simple poles at certain pointss ′ on the critical

line Re(s) = 1/2. We wish to examine the effect of the Hecke operators on the
residues of these poles.

LetL2(Γ \H) denote the space of automorphic (weight zero) functionsφ on
Γ \H with finite norm〈φ, φ〉N where the Petersson inner product is given by

〈φ,ψ〉N =
∫
Γ0(N)\H

φ(z)ψ(z) dµz,

for z = x+ iy anddµz = dxdy/y2. The Laplacian induces the spectral decom-
position

L2(Γ \H) = C ⊕ C(Γ \H)⊕ E(Γ \H)

whereC is the space of constant functions,C the space of cusp forms andE the
space of Eisenstein series. Letηj , for j = 0,1,2 . . . , be an orthonormal basis
for C ⊕ C(Γ \H) with ∆ηj = λjηj and 0= λ0 < λ1 ≤ λ2 ≤ . . . . We may
assume that the Maass cusp formsηj with j ≥ 1 satisfyTnηj (z) = λj (n)ηj (z)

for all n with (n,N) = 1. These Maass forms have Fourier expansion

ηj (z) =
∑
n"=0

bj (n)Ws(nz) (8)

whereW is the Whittaker function, see [Iw]. Similarly to(7) we have, forp
prime not dividingN ,

bj (pn)p = λj (p)bj (n)−
{
bj (n/p) if p | n

0 if p � n
. (9)
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If, for example,ηj is a newform withbj (1) "= 0 thenλj (p)/p = bj (p)/bj (1).
In [O’S1] it is shown thatE∗(z, s) has simple poles at pointssj satisfying

sj (1− sj ) = λj . The residue at such a points ′ is given by

π
1
2−s′

4πi
Γ (s ′ − 1/2)

∑
j :sj=s′

Lf⊗ηj (s
′)ηj (z), (10)

provided this is non-zero. For the remainder we may ignore the non-zero factor
in front of the sum. The convolutionL-function withf andηj as in(6) and(8)
has definition

Lf⊗ηj (s) =
∞∑
n=1

a(n)bj (n)

ns
.

Also known as Rankin-Selberg zeta functions they have been studied in con-
nection with the disappearance of Maass cusp formsηj (z) for Γ0(N) when the
group is subject to a quasi-conformal deformation determined by a holomor-
phic cusp formf (z). In [PS] it is shown thatηj is annihilated if and only if
Lf⊗ηj (sj ) "= 0. In further work [DI] and [L] prove that a high proportion of these
zeta functions are non-zero at this special point. Ifsj = 1/2+ itj , it is known
that #{j : |tj | ≤ T } ∼ CT 2 for a constantC and in [L] the estimate

#{j : |tj | ≤ T ,Lf⊗ηj (sj ) "= 0} % T 2−ε

is proven.
These results indicate thatMaasscusp formsare rarer thanpreviously thought.

It also shows thatE∗ has infinitely many poles on the critical line. Thus the value
of Lf⊗ηj (sj ) appearing naturally in(10) is of great significance.

Continuing our analysis, since the differenceE∗ −Q∗ = FE is holomorphic
for Re(s) ≥ 1/2 except ats = 1 we can work instead withQ∗. We see that the
operatorsTp act on Ress=sj Q∗(z, s) in two ways, directly on the Maass forms
and also onQ∗:

Tp Res
s=s′ Q

∗(z, s) = Res
s=s′ TpQ

∗(z, s). (11)

Thus, for(p,N) = 1,∑
j :sj=s′

Lf⊗ηj (s
′)λj (p)ηj (z) = a(p)p−s′ ∑

j :sj=s′
Lf⊗ηj (s

′)ηj (z)

+(ps′ − p−s′
)
∑
j :sj=s′

Lfp⊗ηj (s
′)ηj (z),

implying that

(λj (p)− a(p)p−sj )Lf⊗ηj (sj ) = (psj − p−sj )Lfp⊗ηj (sj ).
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This formula is actually true for alls not just s = sj as the next proposition
shows.

Proposition 10.For any Maass formηj as above and anys ∈ C we have

(λj (p)− a(p)p−s)Lf⊗ηj (s) = (ps − p−s)Lfp⊗ηj (s)

for fp(z) = pf (pz) and(p,N) = 1.

Proof.Since

fp(z) =
∞∑
n=1

pa(n) e(pnz) =
∑
n:p|n

pa(n/p) e(nz),

we obtain

Lfp⊗ηj (s) = p−s+1
∞∑
n=1

a(n)bj (pn)

ns

= p−s
(
λj (p)Lf⊗ηj (s)− p−s

∞∑
n=1

a(pn)bj (n)

ns

)
,

using the relation(9) and the fact thatλj (p) is always real. Next, with relation
(7),

∞∑
n=1

a(pn)bj (n)

ns
= a(p)Lf⊗ηj (s)− p

∑
n:p|n

a(n/p)bj (n)

ns

= a(p)Lf⊗ηj (s)− p−s+1
∞∑
n=1

a(n)bj (pn)

ns

= a(p)Lf⊗ηj (s)− Lfp⊗ηj (s).

Hence

Lfp⊗ηj (s) = p−s (λj (p)Lf⊗ηj (s)− p−s (a(p)Lf⊗ηj (s)− Lfp⊗ηj (s)
))

= p−sλj (p)Lf⊗ηj (s)− p−2sa(p)Lf⊗ηj (s)+ p−2sLfp⊗ηj (s)

completing the proof.��
So, the relation between the residues ofTpQ

∗ andQ∗ we deduced from
Proposition 9 reflects, in reality, a more global feature of the associated objects.
On the other hand, the effect of the operatorsUp with p | N on our series yields
a more interesting relation among the convolutionL-functions.
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4. Applying the Hecke operatorsUp

We have been working with the Hecke operatorsTp for p prime and not dividing
the levelN . We restrict our attention for a moment to theλj -eigenspace of∆
contained inC(Γ0(N)\H). This space can be decomposed into the space of new-
forms and the space of oldforms (cf. [AL],[Iw]). Ifη(z) is a newform then aswell
as being an eigenfunction of the operatorsTp for p � N it is also automatically
an eigenfunction of eachUp for p | N . For our orthonormal family eachηj may
be chosen to be a newform or an oldform but we shall not need this assumption.

The following is the analogue of Lemma 8 of the previous section.

Lemma 11.Let∆′
p = ∆p −

{(
p 0
0 1

)}
. For each primep withp2 | N we have

the equality

⋃
ρ∈∆′

p
τ∈HN

Γ∞τρ =
⋃
ρ∈∆′

p
γ∈HN/p

Γ∞ργ

where the cosets on the left and right are disjoint. If the primep dividesN and
p2 � N then we have

⋃
ρ∈∆′

p
τ∈HN

Γ∞τρ ∪
⋃
τ∈HN

Γ∞τwp =
⋃
ρ∈∆′

p
γ∈HN/p

Γ∞ργ

where again the unions are disjoint andwp is any matrix with determinantp

and of the form

(
pa 1
Nc p

)
.

Proof.We shall use Lemma 5 from [AL]: suppose the primep dividesN then
let

Γ0(N/p, p) =
{(

a b

c d

)
∈ Γ0(N/p) : p | b

}
.

If p | N
p
then the matricesSj with 0 ≤ j ≤ p − 1 form a complete set of

(disjoint) right coset representatives forΓ0(N/p, p) in Γ0(N/p). Further, if

p � N/p we need the extra coset representative

(
ap 1
cN/p 1

)
wherea and c

are integers satisfying the relationap − cN/p = 1. Denote this set of coset
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representativesΦp. Thus

(
1 0
0 p

)
Γ0(N/p) =

(
1 0
0 p

) ⋃
α∈Φp

Γ0(N/p, p)α

=
(
1 0
0 p

) ⋃
α∈Φp

(
1 0
0 p

)−1

Γ0(N)

(
1 0
0 p

)
α

=
⋃
α∈Φp

Γ0(N)

(
1 0
0 p

)
α =

⋃
ρ∈∆′

p

Γ0(N)ρ ∪ Γ0(N)wp

where the term containingwp is included in the last line only ifp2 � N .
Now(

1 0
0 p

)
Γ0(N/p) =

(
1 0
0 p

)(
1 j
0 1

)
Γ0(N/p) =

(
1 j
0 p

)
Γ0(N/p).

Hence, ⋃
ρ∈∆′

p

ρΓ0(N/p) =
⋃
ρ∈∆′

p
γ∈HN/p

ρΓ∞γ =
⋃
ρ∈∆′

p
γ∈HN/p

Γ∞ργ

where the cosets in the last union are distinct but the cosets on the first one have
multiplicity p. Therefore

(
1 0
0 p

)
Γ0(N/p) =

⋃
ρ∈∆′

p
γ∈HN/p

Γ∞ργ

and we have completed the proof.��
To keep track of the level we will write

Q∗
M(z, s) =

∑
τ∈Γ∞\Γ0(M)

F (τz)Im(τz)s.

Proposition 12.For each primep dividingN ,

UpQ
∗
N(z, s) = a(p)p−sQ∗

N/p(z, s)−Q∗
N(wpz, s)

where the term containingwp is included only ifp2 � N .
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Proof.By definition

UpQ
∗
N(z, s) =

∑
ρ∈∆′

p

∑
τ∈HN

F (τρz) Im(τρz)s

=
∑
ρ∈∆′

p

∑
γ∈HN/p

F (ργ z) Im(ργ z)s −
∑
τ∈HN

F (τwpz) Im(τwpz)
s

=
∑

γ∈HN/p

1

ps
Im(γ z)s

∑
ρ∈∆′

p

F (ργ z)−Q∗
N(wpz, s)

=
∑

γ∈HN/p

1

ps
Im(γ z)sa(p)F (γ z)−Q∗

N(wpz, s)

= a(p)p−sQ∗
N/p(z, s)−Q∗

N(wpz, s)

as in the statement of the proposition.��
Using relation(11) as in the previous section we obtain the following. Let

VMλ ⊂ C(Γ0(M)\H) denote theλ-eigenspace of the Laplacian∆ and setBMλ to
be any orthonormal basis (w.r.t.〈 , 〉M ), of this space. Then we have
Proposition 13.Suppose the primep dividesN . SetWpφ(z) := φ(wpz) and
defineŨp to beUp if p2 | N or Up +Wp if p2 � N . Then∑

φ∈BNλ
Lf⊗φ(sλ)Ũpφ(z) = a(p)

psλ

∑
ψ∈BN/pλ

Lf⊗ψ(sλ)ψ(z)

whereλ = sλ(1− sλ).

This formula may be verified in simple cases and, as before, it seems to be
true for alls ∈ C not justs = sλ. Proving this seems difficult though. In another
direction it should also be possible to prove a completely holomorphic version of
this proposition withBMλ replaced by an orthonormal basis for the holomorphic
cusp formsSk(M).

We conclude this section bymentioning anapplication of our last Proposition.
Suppose thatφ(z) ∈ C(Γ0(1)\H) is a Maass cusp form with∆φ = λφ. LetWpk

be the vector space generated byφ(z) and its ‘descendants’,φpi (z) := φ(piz)

for i = 1,2, . . . , k. Note thatφpi ∈ C(Γ0(pi)\H) and∆φpi = λφpi .
Tomake the presentation easier we re-normalize our inner product and define

〈ξ1, ξ2〉 = [Γ0(1) : Γ0(M)]−1〈ξ1, ξ2〉M,
where it is understood that ifξi ∈ C(Γ0(li)\H) for i = 1,2 thenli | M. Let us
assume that〈φ, φ〉 = 1 and thatTpφ = λpφ. It should be noted that the Maass
forms φpi do not form an orthonormal basis forWpk , for example it may be
shown that〈φ, φp〉 = λp/(p + 1).



102 N. Diamantis, C. O’Sullivan

Weconstruct an orthonormal basis{ψ0, ψ1, . . . , ψk} forWpk using theGram-
Schmidt process where at each stage{ψ0, ψ1, . . . , ψi} is a basis forWpi . Now
Proposition 13 implies that

Lf⊗ψi (sλ)Upψi(z) = a(p)

psλ
Lf⊗ψi−1(sλ)ψi−1(z)

for i ≥ 3. Combining this with the fact thatUpφpi = pφpi−1 for i ≥ 1 and a few
other results we deduce

Theorem 14.Let α = ((p + 1)2 − λ2p)
−1/2 andβ = (p + 1)1/2(p − 1)−1/2α

whereα, β ∈ R, then

ψ0 = φ,

ψ1 = α(−λpφ + (p + 1)φp)

and ψi = β(φpi−2 − λpφpi−1 + pφpi )

for i ≥ 2, gives an orthonormal basis{ψ0, ψ1, . . . , ψk} for the space spanned
byφ, φp, . . . , φpk whereφ is a Maass cusp form for the full modular group and
φpi (z) = φ(piz).

We may also writeWpk = Wold ⊕ Wnew. The space of oldforms,Wold ,
is spanned byφpi with 1 ≤ i ≤ k andWnew, the space of newforms, is the
orthogonal complement ofWold .We see thatφi ∈ Wold for i ≥ 3. If we rearrange
terms and set

ξ0 = β(pφ − λpφp + φp2),

ξ1 = φp

and ξ2 = α(−λpφp + (p + 1)φp2)

then it may be shown that{ξ0} and{ξ1, ξ2, ψ3, . . . , ψk} are orthonormal bases
forWnew andWold respectively whenk ≥ 2.

Only brief sketches of the proofs have been given above. The second author
hopes to return to these topics in a future work.

5. Other Hecke operators

An alternative way to define the space of functionsG∗ (and the one appearing
in [G1]) is to fix f ∈ Sk(M) andG ∈ Mm(N) and to consider the vector space
M(f,G) of functionsG∗ : H → C of polynomial growth at the cusps such that
for somec ∈ C we haveG∗|m−(k−2)(γ − 1) = c · rf (γ ) ·G for all γ ∈ Γ0(N).

If we fix only f ∈ Sk(M), we can setM(f ) = {G∗ : H → C of polynomial
growthat thecuspssuch that for someG ∈ Mm(N)wehave:G∗|m−(k−2)(γ−1) =
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rf (γ ) ·G for all γ ∈ Γ0(N)}. In an analogous manner, we can defineM(G) for
a fixedG ∈ Mm(N).

It is possible to define Hecke operators onM(f,G),M(f ),M(G)which are
compatible with each other. To this end, we prove first the following

Proposition 15.For non-zerof ∈ Sk(M),G ∈ Mm(N) we have:

M(f ) ∼= Mm(N)⊕Mm−(k−2)(N),

M(G) ∼= Sk(M)⊕Mm−(k−2)(N) and

M(f,G) ∼= C ⊕Mm−(k−2)(N).

Proof.Suppose thatG∗|m−(k−2)(γ − 1) = rf (γ )G for someG ∈ Mm(N).Then,
if f̃ (z) denotes the Eichler integral

∫ z
i∞ f (w)(w − z)k−2dw, there is ag ∈

Mm−(k−2)(N) such thatG∗ = f̃ · G + g becausef̃ · G satisfies the above
equation too, soG∗ − f̃ ·G ∈ Mm−(k−2)(N). This expression is unique because
if G∗ = f̃ (z)G′(z)+ g′(z) for some otherG′, g′ then,f̃ (G′ −G) = g− g′ and
hence

(f̃ (G′ −G))|m−(k−2)(γ − 1) = (g − g′)|m−(k−2)(γ − 1)

for all γ ∈ Γ0(N). The equalityf̃ |m−(k−2)(γ − 1) = rf (γ ) then implies that
for all z ∈ H, γ ∈ Γ0(N), we haverf (γ )(z)(G(z) − G′(z)) = 0. Now choose
a z0 ∈ H such thatG(z0) − G′(z0) "= 0 and aγ0 such thatrf (γ0) "= 0. (The
existence of such aγ0 is guaranteed by the Eichler-Shimura isomorphism.) Then
G−G′ does not vanish atSlz0 (l = 0, . . . , k − 2) either, thereforerf (γ0) must
vanish there, which is impossible sincerf (γ0) is a polynomial of degree at most
k − 2.

Similarly, each elementG∗of M(G) can be written uniquely in the form
f̃ (z)G(z)+ g(z) for somef ∈ Sk(M) andg ∈ Mm−(k−2)(N) and each element
G∗ ofM(f,G) can be written uniquely in the formcf̃ (z)G(z)+ g(z) for some
c ∈ C andg ∈ Mm−(k−2)(N). ��

In view of this proposition, for anyf ∈ Sk(M) and anyp with p � N we can
define a Hecke operatorTp(f ) : M(f ) → M(f ) by the formula

Tp(f )G
∗ = f̃ · TpG+ Tpg

for G∗ = f̃ G + g. By Tp on the RHS we denote the usual Hecke operator
on Mm(N) or Mm−(k−2)(N) (according to which functions it is applied on).
Obviously,Tp(f )G∗ belongs toM(f ) satisfying the equation:

(Tp(f )G
∗)|m−(k−2)(γ − 1) = rf (γ )TpG.

This map induces a graded morphism of degree 0 from⊕f∈SK(M)M(f ) to itself.
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Similarly, for eachG ∈ Mm(N), we can define a Hecke operatorTp(G) :
M(G) → M(G) by the formula

Tp(G)G
∗ = ˜(Tpf ) ·G+ Tpg

for anyp with (p,N) = 1 and with the analogous convention on the notation of
the usual Hecke operators as above. ThusTp(G)G

∗ ∈ M(G) and it satisfies the
equation:(Tp(G)G∗)|m−(k−2)(γ − 1) = rTpf (γ )G. This map induces a graded
morphism of degree 0 from⊕G∈Mm(N)M(G) to itself.

Finally, we can set

Tp(f,G)G
∗ = cf̃G+ Tpg

forG∗(z) = cf̃ (z)G(z)+g(z) ∈ M(f,G) and it is easy to see thatTp(f,G)G∗
will belong toM(f, g) satisfying the same transformation law asG∗.Again, this
map induces a graded morphism of degree 0 from⊕G∈Mm(N)

f∈Sk(M)
M(f,G) to itself.

It can be seen directly from their definitions that the maps induced byTp(f ),

Tp(G) andTp(f,G) commutewith each other. The spaceswe construct this way:

⊕f∈Sk(M)M(f ), ⊕G∈Mm(N)M(G), ⊕G∈Mm(N)
f∈Sk(M)

M(f,G)

are isomorphic (but via isomorphismswhichdonot respect thegradingof course).
As an example, the Eisenstein seriesE∗(z, s) of Section 3 is an element of

M(f,E). It may be expressed as

E∗(z, s) = Q∗(z, s)− f̃ (z)E(z, s),

withQ∗(z, s) = ∑
τ∈Γ∞\Γ F (τz)Im(τz)

s as before. So we have

Tp(f,E)E
∗(z, s) = TpQ

∗(z, s)− f̃ (z)E(z, s).

Therefore an immediate corollary of Proposition 9 is

Corollary 16. For p not dividingN ,

Tp(f,E)E
∗(z, s) = a(p)p−s(E∗(z, s)− F(z)E(z, s))

+ (ps − p−s)(E∗(z, s; fp)− F(pz)E(z, s))+ F(z)E(z, s).

By comparisonTpE(z, s) = (p1−s + ps)E(z, s).
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