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1. Introduction

In [G1], [G2], the distribution of modular symbols is studied and a new class
of functions which satisfy a transformation law involving these objects is in-
troduced. The goal of Goldfeld’s program is to prove Szpiro’s conjecture which
states that for elliptic curves with minimal discrimindhtind conductoN there
is an absolute constamtsuch thatD « N*. To do this, an equivalent conjec-
ture involving modular symbols is established in [G4] using the, now proven,
conjecture of Shimura, Taniyama and Welil. It seems that a sufficiently good un-
derstanding of the new series proposed by Goldfeld should yield a resolution of
these conjectures. We repeat here their definition in a somewhat more general
form to include period polynomials rather than modular symbols only.

For positive integerd/, N such thatM | N, letm, k be non-negative integers
such thatn > k — 2 > 0 and lety be a Dirichlet character moduld. First,
for eachf € S,(M) = {holomorphic cusp forms of weigttand levelM} we
denote by the map which sendg € I'h(M), the Hecke congruence group of
level M, to the polynomial function:

y’lioo

@ = [ fww =2t e,
We then consider the functionG* on the upper-half plan& of polynomial
growth at the cusps such that fgre S,(M) andG € M,,(N, x) = {modular
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forms (not necessarily analytic) of weightfor level N and associated character
x} we have:

(G lm—t—2).x¥)(2) = G*(2) + 1 (¥)(2)G(2)
or, in a more compact notation,

Gln—t-2.x(y =D =ri(y)-G forally e [o(N),zeH. (D
As usual the ‘slash’ operatay , is defined by the formula

(Qlnx (EiN@) = X(£3)Q(y2)(ez +d) " det((; 7))"/?

and wheny is trivial we write |,. Each of these functions can be expressed
essentially as a sum of Poineaséries shifted by a modular symbol (cf. [G1]).

In this work, we introduce Hecke operators on series formed with modu-
lar symbols which are natural with respect to the structure of the spaces these
functions comprise and we study their effect on several associated objects.

In section 2 we view series formed with modular symbols as a kind of gen-
eralized modular integral and we apply Knopp’s Hecke operators for modular
integrals, denoted by, with (p, N) = 1, to them. For holomorphic series
formed with modular symbol&* that vanish at the cusps, we describe the effect
of the operatorg), on a certain family of polynomials and demonstrate a relation
with values ofL-functions ofG*. This is analogous to the relation of the period
polynomial to values oL -functions of the usual cusp forms.

In sections 3 and 4 the action of the Hecke operators on non-holomorphic
Eisenstein series formed with modular symbols, i.e.

E*(z,5 /) = E*(z,5) == ) r;(0@Im(z2)’,

teloo\I"

is examined in detail. A description of the basic properties of these functions
(for f € S»(M) and holomorphic), including their meromorphic continuation,
functional equation, poles and residues, was initiated in [G1], and completed
by the second author in [O’S1] using a generalization of Selberg’s method for
the analytic continuation of Eisenstein series. These results have been used by
Goldfeld to prove some first theorems on the distribution of modular symbols
(cf. [G2]). In this case, the effect of the Hecke operatdyswith g | N, (in the
notation of Atkin and Lehner [AL]) or£* yields an interesting relation involving
Rankin-Selberd.-functions when we consider the action on the residues of the
poles of E*. As an application of this an orthonormal basis for the spaces of
oldforms and newforms coming from a single Maass form on the full modular
group is constructed.

In Section 5, some alternative Hecke operators are given which are compatible
with different definitions of the space in which our functia@$ can be thought
of as belonging. Although these operators do not behave as naturally with respect
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to the analogue of the period polynomial as the first one discussed here, they are,
in some cases, better suited to carrying oveGtothe eigenproperties of the
cusp form to which the modular symbol is associated. Thus, depending on the
applications, either type of Hecke operator may be used.

Finally, we should remark that our work can also be understood in terms
of a more general project attempting a study of objects associated to modular
forms, such ad.-functions, periods etc., using the action of the relevant group
by |, for varying indexk and, consequently, the corresponding cohomology. This
viewpoint has already been applied by the first author in the investigation of the
derivatives ofL-functions of (usual) cusp forms (cf. [D1], [D2]) and earlier, by
other authors, in the study of modular integrals, rational period functions etc. (cf.
[K], [A], [CZ], [G3] etc.)

The authors would like to thank D. Goldfeld, S. Wolpert and D. Zagier for
their helpful suggestions and advice in the writing of this paper. This work
was completed while the first author was a guest at Max-Planck-Institut f
Mathematik in Bonn in the framework of the program Training and Mobility of
Researchers.

2. Hecke operators andL-functions

We recall that a rational period function of weight 0 for SL»(Z) is a rational
functiong such that:

q+aqhkT =q+qhkU+qlkU?=0 where T =93, U=(1").

Also, a modular integral of weiglitis a meromorphic functio# on the upper-
half planef) of polynomial growth at the cusps such th&t; S = F andF |, T =
F + g for ¢ arational function and := (§1). It is easy to see that will then
be a period function.

Because of (1), in the special case tidat= 1 the functions defined in
the Introduction can be considered as modular integrals associated to period
functions which are no longer rational but rather smooth with polynomial growth
atthe cusps. Motivated by this observation we study first the effect Knopp’s Hecke
operators for modular integrals (see [K]) have on our functions.

With the notation used in the Introduction, we gset= m — (k — 2) and
consider the spac® of smooth functions o) with polynomial growth at the
cusps. We letfp(N) act ont from the right by|, and we denote byl the
coboundary operator from the 0-cochains to the 1-cochains (with respect to the
‘bar’-resolution). Knopp’s Hecke operators on modular integrgfer (p, N) =
1, in the formulation of [CZ], is given by the element®fM,] (whereM; :=
(M € My(Z); det(M) = 1}):

T,:= ) M wherea, :={(¢4):ad = p,a>00<b<d).
MeA),
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Thus we set:

T,G* := G*|,T,.
SincedT, = T,d, where theT, on the right denotes the Hecke operator on
1-cocycles (cf. [S], Ch. 8), we have

(T,GHNu(y =1 =T,(ry - G)(y) forall y € I'n(N).

We return to the casl¥l = 1. Sincers(S) -G = 0, the fact that;(y)-G e N
satisfies a 1-cocycle condition is equivalentrjo:= rs(T) - G € N being
annihilated byl +1 andU 24U +1. Using Knopp’s Hecke operators as described
in [CZ], we can give an explicit formula for the period function associated to
T,G* in terms ofry.

Proposition 1 [CZ]. LetT,, and M, be as above and let denote the right ideal
(14 T)Z[M1]+ A+ U + U?Z[Mq] of Z[M,]. Then, there arX,, Y, € Z[M,]
such that(i)X,J C JZ[M,] and (ii))T,(T — 1) = (T — DX, + (S - 1Y,.
Moreover an example of such &, is given, namelyX, := )", o, M where
M ={(9%) € M, suchthata > |c|, d > |b|, bc <0,c =0 = —d/2 <
b=<d/2,andb =0 — —a/2 <c <a/2}.

Inamanner completely analogous to the application of that theorem discussed
in [CZ], we have:

(TpG*)|n(T - 1) = (G*|nTp)|n<T - 1) = G*|n(T - 1)|nXp + G*|n(S - 1)|an
= rflnXp

(since, as it is easy to se@;|,S = G*) and because of part (i) of the theorem,
rrl. X, is a period function too.

We study next how these Hecke operators interact with the analogue of period
polynomials for those of our functions which are holomorphic and vanish at the
cusps (see [G1]). To do that we quickly recall the definition ofthHfeinction as-
sociated to series formed with modular symh@igsee [G1]). For the remainder
of Section 2 we shall assume that> k.

Let G* have a Fourier expansion (ato) of the form

o0

G*'(z) = Za(n)e(nz).
n=1
In[G1] itis proven that
LG*(S) = Z a(n)

ns
n=0

converges absolutely farin some right half-plane and that it can be expressed
in terms of the inverse Mellin transform:

/O G*(iy)y* *dy = I'(s)(2) " Lg+(s).
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The proofis identical with that of the case of cusp forms because the key property
used is the exponential decay at the cusps which holds alg& farhis equation
enables us to extentl;+ to an entire function. More generally, tliefunction
of G* twisted by an exponential character can be expressed in terms of integrals
of the form [ G*(iy)(y — x)*~dy with x € Q.
It is then natural to define the map sending an elemeaf IH(N) to the
polynomial:
y’lioo
o= [ G- X
wheren = m — (k — 2) > 2. WhenN = 1, the coefficients of (T') are explicit
linear combinations of values @f;+(s) inside the critical strip (as is the case for
the period polynomial as well).

Proposition 2. Let G* be a holomorphic function ofy which vanishes at the
cusps and satisfies equation (1) for sofhe S;(1) andG € S,,(1). Then,

n—2

n—2 1. i\ . o
U(T):Z( i )(—1)1_ ﬂ(g) Lo«(j+DX" 7.

j=0

Proof. By the definition (and binomial expansion):

En-2 (L o
o(T) = Z( j )(_1)1 (/ G (Z)Z]dz> X J
]=O 100

The result is obtained by this formula and the expressiahgfin terms of the
inverse Mellin transformfor = j + 1. O

More generally, the coefficients 61 g), for anyg € Ih(N) are linear combi-
nations of values of the twisted (by an exponentiaflinction. The map satisfies
a 1-cocycle condition with respect to the usual action of I'h(N) on the poly-
nomials of degrees n — 2 “modulo linear combinations of products of periods
of f andG". We recall that the period of a weighttusp formg for Ix(N) is an
integral [, g(z)z/dz for j € {0, ..., k — 2}.

Specifically,

Proposition 3.For all y1, y» € Ih(N) we have:

o (y2y1) = o (¥2)l2—nv1 +0(y1)

¥s Lioo
+ (/ rf(yl_l)(z)G(z)(z — X)"de> l2—n V1.

j 00
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Proof. By the equality(z — y1X)j (y1. X) = (v; *z — X)j(y; %, z) and equality
(1), we obtain:

¥5 tico

o(¥2)|o—ny1 = f G*(2)(z — 1 X)" %) (y1, X)" %z

ico

1.
Y, 100
- / G* (i ) (Y — X)"2d (%)

j 00

¥5 tico
- / rr(rr H@G@ (g 'z = X)" 2y )" 2z
By a change of variables, we observe that the firstintegral equgl$:) — o (y1)
and this completes the proofo

This formula implies that is determined by its values at the generators
of I'n(N) and by the (usual) periods @f and f. In particular, forN = 1, it
is determined (“modulo products of usual periods") by its valu& afsince
a((3})) = 0), so this value can be considered as the analogue of the period
polynomial.

Inorderto characterize the effect of the Hecke operat6rain the associated
mapo, we need a easy generalization of Proposition IIgV) (N > 1).

Lemmad4.Let{y,, ..., y,} be asetof generators 6§ (N). Foreveryy € Io(N)
there areXy, ..., X, € Z[M,] such that

I(y-D=mn-DX1+---+» - DX,

Proof.Foreachf € A,,thereisay € IH(N)and a(unique)! € A, suchthat
MyM~ =y (cf.[S], Prop. 3.36). Therefor@, (y —1) = 3, (yuM — M) =
>oulvm — 1)M. The lemma follows by this equality and the observation that,
forally € Io(N), y =1 € (1 — DZIM1] + -+ + (v» — DZ[M4]. (If v
satisfies this property, thenfor=1,...,r, vy —1=(;, — Dy + (y — 1),
y;ly —1=(y,— 1)(—y,.’ly) + (y — 1) and the fact follows by induction.)O

Theorem 5.With the above notation, lat* be a holomorphic function ofy
which vanishes at the cusps and satisfies equation (1) for gomé, (M) and
G € S,,(N). Then, for ally € I'h(N) and p such that(p, N) = 1 we have,

or,6:(y) = ZUG*(Vi)|2—nXi + P

1

wheren := m — (k — 2) and P is a polynomial of degree< n — 2 whose
coefficients are rational combinations of products of period€ @ind f.
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Proof.We setsg-(t) = [™ G*(2)(z — t)"~%dz. Then, we have
y(y~tico) X X
(5G+l2-n(y = D)(7) = / G (D)z—yr)" “jly, )" “dz — sg+(1),

YT
and this, by a change of variables in the first integral, equals

y~L(ioc0) ico
/ (G*|ay)(2)(z — T)" 2dz — / G*(2)(z — 1)"2dz

y Hioco)
=og+(y) + / rr(y)(2)G(2)(z — )%z

becausdyz — y1)j(y,2)j(y, 1) = z — . SinceT,(rs - G)(y) is the period
function corresponding t@,G*, this also implies:

yHioo)
57,6+ l2-n(y = D)(@) = 07,6+ () + / T,(r - G)(¥)(@)(z — 7)"2dz.

(2
Moreover, by Lemma 4, we have that
T,(ry G)(y) = (T,GM)|u(y = 1) = G*[, Tpla(y — 1)
=) G i — D - X)) = (rr () - G Xi.
Hence equality (2) can be written in the form:
(s7,6*l2-n(y — D) (7) = o7,6+(¥)
y~Hioo)
+ Z/ ((rr () - O X)(2)(z — 1) dz.
By definition,
p ioco
s1,6+(T) = p”/ZZ/ G*(i2)j (e, 2) " (2 — 1) ?dz.
i=0""
However, for allM € GL>(R),
(z—M1)j(M, 1) =det(M)(M ™Yz —1)j(M, M 1z)"t andd(M~1z)
det(M1)dz
Ry 3)
JM~,2)

so, by a change of variables in each of the integrals, we eventually see that

p ioco
s1,6+(t) = pMETT2 N f G*(2)j (@i, )" 2(z — ey7)"?dz
i=0 VT

= (Sg*|2-nTp)(7).
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Putting all these equalities together, we obtain:
o1,6+ (V) = (51,6 [2-n (¥ — D)(7)

y_lzoo
— Z / ((rr (1) - G)a X)) () (z — )" %dz

Lioco)

= GorlenTyly =)D = / () - D)X (D) (2 = 7).

Using Lemma 4 once more, the last sum becomes:

y_lioo

> celan(i—Dla-aX) (D)= / (rr ()-GO X)) (z—1)""%dz or
i=1 i YT

Vi lico
ZGG*(%)lz WX +Z ( / rr (1) (@G @)z T)"_Zdz) - X,

yHioco)

- Z/ (rr(¥) - G)uXi)(2)(z — )" %dz (4)
Now we observe that for eachif X; = )" M € Z[M,], then

Lico)
/ ((rr(y) - G)uX)(2)(z — )" %dz =

y~tico \
S G~ o 2.2 " phdz,
M T

Because of (3), this equals,

“Lico

2 / rr(r)(M2)G(Mz)(Mz — M©)" 2 j(M, ©)""2d(M2)
M

T

or, by a change of variables,

My~ lico
> (/ re(y) (@G (@) (z — r)"_zdz> l2-n M

M

Therefore sum (4) equals,

yflioo
ZUG*(V1)|2 uXi +ZZ ( /M rrE@G@( - r)"zdz) l2-n M

i=1 M y~tico
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Sincer;(1N()G@) = T2 (DG [1 " fwpwt 2 dw the

J
double sum is a polynomial whose coefficients are linear combinations of prod-

ucts oftheform(ff G()z'dz) ([, tios fw)z/dz)withO < i <n—2+k—2=
m—2and0< j < k—2anda, 8 € Q. Such integrals can be written as rational
linear combinations of periods (cf. [M]). From this the desired result follows.
O

Corollary 6. Let f € Sy (SL2(Z)) andG € S,,(SL»(Z)). Then we have,
GTpG*(T) = GG*(T)|2—nX[7 +P

wheren := m — (k — 2) and P is a polynomial of degreec n — 2 whose
coefficients are rational combinations of products of period€ @ind f.

Proof. Sinceos+ (S) = 0, this follows from the proof of Theorem 5 (for = T')
where rather than using Lemma 4 we use Propositiond.

The same results hold for primgdor p | N with 7, replaced by the operator
= Zf:ol(él",). The reason for this is that (as in the case7pf for all
y € Ip(N)andi =0, ..., p —1, thereis auniqug € {0,..., p — 1}, such
that(5;)y (55) " € To(N).

3. Eisenstein series formed with modular symbols and the operators,

Let I" = I'h(N) be the Hecke congruence group of leixelin [G1], [O’S1] the
non-holomorphic Eisenstein series

E'z5: f) = E'z)i= Y rp(D@Im(r2) 5)

e\l

is studied in the special case thats a weight 2 holomorphic cusp form. In that
casery(t)(z) = rp(t) = (7, f)/(2ri) is a modular symbol. As can be readily
verified, for a fixeds, E*(-, s) satisfies (1) withy = 1, m = k — 2 = 0 and
G()=E(z,s) = Zrerm\r Im(tz)*, the usual automorphic non-holomorphic
Eisenstein series. The seri€s converges to a holomorphic function offor
Re(s) > 2. Asa function ot it is an eigenfunction of the hyperbolic Laplacian
A= -y i 3 22y and is real-analytic. In [0’S2] it is shown th&t* has a
meromorphlc contlnuatlon to the entirglane and a functional equation relating
values at to those at 1 s. In [O’'S1] and work to appear it is also shown that
E* has simple poles on the critical line Rg= 1/2.

In this section we examine the effect the Hecke operators have on such series
and derive a relation for the values of certain convolutiefunctions at special
points. We fix, once and for all, a weight 2 holomorphic newfofia) for I".
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This implies thatf is an eigenfunction of the Hecke operatdisfor primes
p {1 N andU, for primesq | N. If f has Fourier expansion

f@) =) amenz) (6)
n=1

then we may normaliz¢ to havea(l) = 1. In that casel, f = a(p)f and
U, f =a(q)f.Asis well known, the coefficients(n) have the following mul-
tiplicative properties:

a(pha(p) =a(p"™) +a(p" Hp i ptN,
a(p’)=a(p) it p|N,
and a(m)a(n) = a(mn) if (m,n) = 1.

Thus in particular we have the formula

a(pn) = a(p)a(n) — {S(n/p)p :]1: 5 H 2?217 ﬁVN ' 0

Also it is known thata(p) = 0 if p? | N anda(p) = +1if p | N andp? { N.
We next set

Fi2) = F(z) = / Fw) dw,

the antiderivative off. The Hecke operators act naturally on the ‘automorphic
part’ of our function

0% (z,s; f) = Z F(t)Im(tz)’ = E*(z,5) + F(Q) E(z, 5),

Tel\I"

where itis clear tha@* is automorphic with weight zero. To prove the proposition
describing the effect of, on 0*, we need the following two lemmas.

Lemma 7.For each primep such thatp { N we havel, F := F|oT, = a(p)F.

Proof.

Pz Pz
T,F () = Z/ f(w)dw=2/. f(w) dw
00 0 pioo

1
pPEA)

= Z/ f(/)w) d,Ou) =/ [Tpf(w)] dw = a(P)F(Z). O
P 1oo 100

Note that ifg | N thenU, F := F|oU, = a(q) F by the same proof.
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Lemma 8.Let Hy be a set of representativesiBf,\ I'o(N). Then, for each prime
p with (N, p) = 1 we have the equality

U I'otp = U I'wpt

pEAD PEAD
TeHy TeHy

where the cosets on the left and right are disjoint.

Proof. We first prove that J jca, I'nopt C | Jrea, Iotp. FOr eachr € I'o(N)

TeHy TeHy

there is a unique € A, such thaor 5 € I(N) (see [S], Prop. 3.36). Then,
ot~ L will equal St for somen € Z,t' € Hy, wheres is the generator of
T, 1.8 Toopt C U reay Tootp.

TeHy

Conversely, ler € Hy andp € A,. Thenthereisan € Z andp € A,
such thato~1S"tp € I'H(N). Thisn can be found as follows. If | ¢, then

-1 .
10 ab 1i\ (aai+bp
<0p> <0d> (0P>_(§ %"+d>er°(N) and
-1 b+nd
p0 1n ab p0\ [(a-+nc
(01> (01><cd>(01>‘( pe 5)”0“”

for anyn € Z such thatp|(b + nd). If p { ¢, then

-1 . a+nc a+nc
p0 1n ab 1i\ (S <%i+b+nd
(69) (03) (22)(ap) = (" 7 ™) = e

for n with pla + nc and

-1
10 ab)(pO)_(pab _
(0p> (cd)<01>_<p %)EFO(N), if pld, or
- b+nd :
PO In\(ab)\(pO\_ (a+nc=i+b+nd
<01> (Ol)(cd)(Ol_ pe "y € I(N)

for anyn with p|b + nd if p td. Hence,I'wtp C |Jreap Ioptr. O

TeHy

We are now ready to prove
Proposition 9.Setf,(z) := pf(pz) then for each primg not dividingN

T,0%(z,s) =a(p)p* Q" (z,8) + (p* — p™) 0"z, s: fp)-

Proof.
T,0%z.s)= ) »  F(p2) Im(zpz)’

peAp T€l\T

= Z Z F(ptz) Im(pt2)’
p T
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Note that Infpz) = %Im(z) for eachp = (é ;) and Im((g (::I)_)z) = pIm(z). So
we obtain

T,0%(z,s) = p° Z (F(ptz) +p& (Z F(ptz) — F(ptz))) Im(zz)’
T o

= pS Z (F(p-[z)(l_ p—ZY) + p—ZY ZF(,OTZ)> |m(‘EZ)S
t )

=p* > (Fpr)(1— p?) + p2a(p)F(12)) Im(x2)’

T

=(p'—p )Y F(pra)Im(r2)’ +a(p)p~* Q*(z. 5).

Noting that
z y 244
f pfpwydw = | f(w)dw = F(pz)

completes the proof. O

As we remarked earlief* has simple poles at certain pointon the critical
line Res) = 1/2. We wish to examine the effect of the Hecke operators on the
residues of these poles.

Let L?(I"\$) denote the space of automorphic (weight zero) functipos
'\ $ with finite norm{¢, ¢)y where the Petersson inner product is given by

<¢>,«/I>N=/ 6 (V@ dpz.
TIo(N)\$

forz = x +iy andduz = dxdy/y?. The Laplacian induces the spectral decom-
position

LX(I'\$) = CaC(I'\9H) & E(I'\H)
whereC is the space of constant functioidsthe space of cusp forms agdhe
space of Eisenstein series. gt for j = 0,1, 2..., be an orthonormal basis
forCe C(I'\$) with An; = Ajpjand 0= Ao < A1 < A < ... . We may
assume that the Maass cusp formsvith j > 1 satisfy7,n;(z) = X;(n)n;(2)
for all n with (n, N) = 1. These Maass forms have Fourier expansion

ni(2) =Y bi(m)W,(nz) ®
n#0
whereW is the Whittaker function, see [Iw]. Similarly t6/) we have, forp
prime not dividingN,

bj(n/p) if pn

Oifptn’ ©

bj(pn)p = A;(p)b;j(n) — {
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If, for example,n; is a newform withb; (1) # 0 theni;(p)/p = b;(p)/b;(1).
In [O’S1] it is shown thatE*(z, s) has simple poles at points satisfying
s;(1 —s;) = A;. The residue at such a poiitis given by

T 2

I —1/2) Y Ly, (s)(2), (10)

4ri

Jjisj=s'

provided this is non-zero. For the remainder we may ignore the non-zero factor
in front of the sum. The convolutioh-function with f andn; as in(6) and(8)
has definition

[e.¢]

Lygy,(s) = Z M'

ns
n=1

Also known as Rankin-Selberg zeta functions they have been studied in con-
nection with the disappearance of Maass cusp fojns for I1(N) when the
group is subject to a quasi-conformal deformation determined by a holomor-
phic cusp formf(z). In [PS] it is shown that); is annihilated if and only if
Lygy; (sj) # 0. Infurther work [DI] and [L] prove that a high proportion of these
zeta functions are non-zero at this special point; K= 1/2 + it;, it is known
that#; : [tj)| < T} ~ CT? for a constant and in [L] the estimate

#2151 < T, Lyey (s)) # 0} > T

is proven.

Theseresultsindicate that Maass cusp forms are rarer than previously thought.
It also shows thaE* has infinitely many poles on the critical line. Thus the value
of Lyg,, (s;) appearing naturally ig10) is of great significance.

Continuing our analysis, since the differente— Q* = FE is holomorphic
for Re(s) > 1/2 except ak = 1 we can work instead witlD*. We see that the
operatorsl), act on Res.; 0*(z, s) in two ways, directly on the Maass forms
and also orQ*:

T, F\’_e/SQ*(z, s) = ResT, 0*(z, 5). (11

Thus, for(p, N) =1,

D Lygy On(pnj) = a(p)p™ D Lygy, ()n;(2)

jeog:—q/ jog:—c¢/
jisj=s Jisj=s

H( =P D Ly () (@),

Jjisj=s’'
implying that

Aj(p) —a(p)p™)Lygn (s;) = (P — p~) L, en, (5))-
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This formula is actually true for al# not justs = s; as the next proposition
shows.

Proposition 10.For any Maass forny; as above and any € C we have
(4j(p) —a(p)p™)Lyey; () = (p* — p~")Ly,n; (s)
for f,(z) = pf(pz) and(p, N) = 1.

Proof. Since

£ =Y pam)e(pnz) =Y pa(n/p)e(nz),

n=1 n:pln

we obtain

Ly, (s) = p—**t Z —a(n)b ()

s a(pn)b,-(n))

nS

=p” (/\j (P)Lygn () — p

n=1

using the relatior{9) and the fact thak; (p) is always real. Next, with relation
(0,

i a(pn)b (n)

=a(p)Lyey, () =P ) M
"~ n:pln n
=a(p)Lygy(s) — p~*** Z a(n)b (pn)

=a(p)Lyey;(s) — Ly,en, (S)-
Hence
Li,on;(s) = p~* (Ai(p) Ly () — p~* (a(p)Lygy; (s) — Lo, (5)))
= P2 (P) Ly (8) = P2 a(p)Lyey () + P2 Ly,en, ()
completing the proof.O

So, the relation between the residues7pD* and Q* we deduced from
Proposition 9 reflects, in reality, a more global feature of the associated objects.
On the other hand, the effect of the operaidgswith p | N on our series yields
a more interesting relation among the convoluticfunctions.
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4. Applying the Hecke operatorsU,

We have been working with the Hecke operat@y$or p prime and not dividing

the level N. We restrict our attention for a moment to theeigenspace ofA

contained irC(I'p(N)\$). This space can be decomposed into the space of new-

forms and the space of oldforms (cf. [AL],[Iw]). #(z) is a newform then as well

as being an eigenfunction of the operat@gdor p { N it is also automatically

an eigenfunction of eaadli, for p | N. For our orthonormal family eacl} may

be chosen to be a newform or an oldform but we shall not need this assumption.
The following is the analogue of Lemma 8 of the previous section.

Lemmall.letA), = A, — {(g 2)} For each primep with p? | N we have

the equality

U Iotp = U I'spy

peA’p peA’p
teHy yEHN/p

where the cosets on the left and right are disjoint. If the priprdividesN and
p? 1 N then we have

UFOO‘L’,O U U Itw, = U I'sopy

peA}, teHy peAb
TeHy veHN/p

where again the unions are disjoint ang, is any matrix with determinang

pal
and of the forn( Ne p).

Proof. We shall use Lemma 5 from [AL]: suppose the primelivides N then
let

/e = {(40) e v p o]

If p | ¥ then the matrices’ with 0 < j < p — 1 form a complete set of
(disjoint) right coset representatives foy(N/p, p) in Io(N/p). Further, if

p 1 N/p we need the extra coset representa(vea wherea andc

P
cN/p1l
are integers satisfying the relatiapp — ¢N/p = 1. Denote this set of coset
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representative@,. Thus

10 10
(Op> To(N/p) = <0p> U n/p. e

aed,
10 10\ 10
- <0P> L{ (0p> FO(N)(OP)“
10
= FO(N)(O )a: U i@ U n(Nyw,
aed, P peA),

where the term containing, is included in the last line only ip?  N.
Now

10 _(10\[(1j _ (1]

Hence,

U e = U elwr=J I'eov

/ U U
pGAI, pedy pedy,
yeHN/p VEHN/p

where the cosets in the last union are distinct but the cosets on the first one have
multiplicity p. Therefore

10
<Op)Fo(N/p)= U oy

054;7
VEHN/]?

and we have completed the proofa

To keep track of the level we will write

Oz, 8) = Z F(t2)Im(tz)’.

telo\l0(M)

Proposition 12.For each primep dividing N,
UpyQN(z,8) =a(p)p™ Qy,,(2,8) — Oy (wpz, 5)

where the term containing, is included only ifp?  N.
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Proof. By definition
U,0y(z,8) = Z Z F(tpz) Im(zp2)*

peA’p T€Hy
= Z Z F(pyz) Im(pyz)* — Z F(twyz) Im(tw,z)*
peA, veHN/p T€Hy
1
= Y = Im@2)' Y Flpyz) — Qy(wpz,s)
yeHN)p peA),
1 s .
= Y = Imy)'a(p)F(yz) — Oy (wyz. 5)
yEHN,p

=a(p)p ' O,,(z,5) — On(wpz, 5)
as in the statement of the propositiorma

Using relation(11) as in the previous section we obtain the following. Let
vM c C(I'n(M)\$) denote the.-eigenspace of the Laplacianand setB)” to
be any orthonormal basis (w.r{t, ),), of this space. Then we have

Proposition 13. Suppose the primg dividesN. SetW,¢(z) := ¢ (w,z) and
definel, to beU, if p? | N or U, + W,, if p?{ N. Then
~ a(p)
Y Lros0pd@ =~ 3 Lioy (0¥ @
N/p

¢eB) yeB)
whereir = 5, (1 — s3).

This formula may be verified in simple cases and, as before, it seems to be
true for alls € C not justs = s;. Proving this seems difficult though. In another
direction it should also be possible to prove a completely holomorphic version of
this proposition withBY replaced by an orthonormal basis for the holomorphic
cusp formsS; (M).

We conclude this section by mentioning an application of our last Proposition.
Suppose thap(z) € C(Ip(1)\$) is a Maass cusp form with¢ = L¢. Let wr'
be the vector space generatedday) and its ‘descendantsy, (z) := o (p'z)
fori =1,2,...,k. Note thatqﬁp; e C(Io(pH\$) anquﬁp; = Ay

To make the presentation easier we re-normalize our inner product and define

(&1, &) = [To(D) : To(M)] Y€1, &) m,

where it is understood that§ € C(Ip(;)\$) fori = 1, 2 thenl; | M. Let us
assume thalp, ¢) = 1 and thatl,¢ = A,¢. It should be noted that the Maass
forms ¢, do not form an orthonormal basis fov ", for example it may be
shown thatg, ¢,) = A,/(p + 1).
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We construct an orthonormal basig, 1, . . ., ¥y} for wr using the Gram-
Schmidt process where at each stége, v1, ..., ¥;} is a basis fow”". Now
Proposition 13 implies that

a(p)

Sh

Lygy, (5:)Up¥i(2) =

Ligy, 4 (s)Vi—1(2)

for i > 3. Combining this with the fact thdf,¢, = p¢,i-1 fori > 1 and a few
other results we deduce

Theorem 14.Leta = ((p + 1> — A2) Y2 andB = (p + DY?(p — 1)V«
wherea, 8 € R, then

Vo= ¢,
V1=a(=2,¢ + (p+1¢,)
and ;= B(dpi-2 — ApPpi-1 + poyi)

fori > 2, gives an orthonormal basig)o, ¥1, ..., ¥} for the space spanned
by, ¢p. ..., ¢, Whereg is a Maass cusp form for the full modular group and

¢pi (2) = ¢(p'2).

We may also writew?" = Woa ® W,ew. The space of oldformsW,,,,
is spanned by, with 1 < i < k and W,,,, the space of newforms, is the
orthogonal complement ¥,,,. We see thap;, € W, fori > 3. If we rearrange
terms and set

§o = B(pd — Apdp + ¢p2)a
Sl = ¢p
and §2 = a(_)‘p¢p +(p+ 1)¢p2)

then it may be shown thdty} and{&1, &, ¥, ..., ¥} are orthonormal bases
for W,.., andW,,, respectively whew > 2.

Only brief sketches of the proofs have been given above. The second author
hopes to return to these topics in a future work.

5. Other Hecke operators

An alternative way to define the space of functi@ris(and the one appearing
in [G1])istofix f € Sy(M) andG € M,,(N) and to consider the vector space
M (f, G) of functionsG* : $ — C of polynomial growth at the cusps such that
for somec € C we haveG*|,,_x—2(y —1) =c-rp(y) - G forall y € I'x(N).

If we fixonly f € Sy(M), we can seM (f) = {G* : $ — C of polynomial
growth atthe cusps such that for soe M,,(N)we haveG*|,,_«_2(y—1) =



Hecke theory of series 103

re(y) - Gforall y € I(N)}. In an analogous manner, we can deflieG) for
afixedG € M,,(N).

Itis possible to define Hecke operatorsMni f, G), M(f), M (G) which are
compatible with each other. To this end, we prove first the following

Proposition 15.For non-zerof € S, (M), G € M,,(N) we have:

M(f) =M, (N)® M, _x-2(N),
M(G) = Si(M) @ M,,_4-2(N) and
M(f,G)=C® M,_y4-2(N).

Proof. Suppose that*|,,_—2(y — 1) = r¢(y)G for someG € M,,(N).Then,
if f(z) denotes the Eichler integrg(llio f(w)(w — 2)*2dw, there is ag €
M, —k—2(N) such thatG* = f - G + g becausef - G satisfies the above
equation too, s@G* — f -G € M,,_ -2 (N). This expression is unique because
if G* = f(2)G'(z) + ¢'(z) for some othel5’, g’ then, f(G' — G) = g — ¢’ and
hence

(f(G' = GNln-t-2(y =) = (€ = &Dlm-c-2 — 1

forall y € Io(N). The equalityf|m_(k_2)(y — 1) = rs(y) then implies that
forallz € 9,y € I'n(N), we havery(y)(z)(G(z) — G'(z)) = 0. Now choose
azo € 9 such thatG(zo) — G'(z0) # 0 and ayp such thats(yo) # 0. (The
existence of suchg is guaranteed by the Eichler-Shimura isomorphism.) Then
G — G’ does not vanish &’zo (I =0, ..., k — 2) either, therefore, (yp) must
vanish there, which is impossible sing&yy) is a polynomial of degree at most
k—2

Similarly, each elemenG*of M(G) can be written uniquely in the form
f(z)G(z) + g(z) for somef € Sy (M) andg € M,,_x—-2(N) and each element
G* of M(f, G) can be written uniquely in the formf (z) G(z) + g(z) for some
ceCandg € M,,,_—2(N). O

In view of this proposition, for any" € S, (M) and anyp with p f N we can
define a Hecke operatdt, (f) : M(f) — M(f) by the formula

T,(/)G* = f-T,G + Tpg
for G* = fG + g. By T, on the RHS we denote the usual Hecke operator
on M,,(N) or M,,_x—2(N) (according to which functions it is applied on).
Obviously, T, (f)G* belongs taM ( f) satisfying the equation:
(Ty(NHGm-t—2)(y = 1) = rp(¥)T,G.

This map induces a graded morphism of degree 0 oy, ) M (f) to itself.
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Similarly, for eachG € M,,(N), we can define a Hecke operatfy(G) :
M(G) — M(G) by the formula

T,(G)G* = (T, f) -G+ Tpg

for any p with (p, N) = 1 and with the analogous convention on the notation of
the usual Hecke operators as above. THU&)G* € M(G) and it satisfies the
equationy(7,(G)G*)|m-x-2(y —1) = rr,s(y)G. This map induces a graded
morphism of degree O fro@®geum,, vy M (G) to itself.

Finally, we can set

T,(f,G)G* =cfG+Tyg
for G*(z) = ¢ f(2)G(z) + g(z) € M(f, G) and itis easy to see th@}(f, G)G*

will belong toM (£, g) satisfying the same transformation law@s Again, this
map induces a graded morphism of degree 0 f@)mMm<N> M(f, G) to itself.

It can be seen directly from their definitions that the maps inducek), o),
T,(G) andT,( f, G) commute with each other. The spaces we construct this way:

BressanM(f), @cem,vyM(G), & ettt M(f,G)

areisomorphic (butviaisomorphisms which do notrespect the grading of course).
As an example, the Eisenstein serieyz, s) of Section 3 is an element of
M(f, E). It may be expressed as

E*(z,5) = 0%"(z,5) — f(E(z, ),
with 0*(z, s) = ZteFM\F F(t2)Im(tz)* as before. So we have
T,(f, EYE*(z,5) = T,Q*(z,5) — f()E(z,5).

Therefore an immediate corollary of Proposition 9 is

Corollary 16. For p not dividingN,

T,(f, E)E*(z,5) = a(p)p " (E*(z,5) — F(2)E(z, 9))
+(p" = pNE (2,85 fp) — F(p)E(z,9) + F()E(z, 5).

By comparisor?, E(z, s) = (p** + p*)E(z, 5).
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