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The arithmetic progression 1, 2, 3 can be broken into two consecutive

pieces that have equal sums by the relation 1 + 2 = 3. The first author,

in the problem pages of the journals [1] and [2], wondered if an arithmetic

progression could be found that breaks into three consecutive pieces with

equal sums. Here are some examples that come close:

4 + 5 + 6 = 7 + 8 = (9 + 10 + 11)/2,

3 + 5 + 7 + 9 = 11 + 13 = (15 + 17 + 19 + 21)/3,

(6 + 7 + 8 + 9)/2 = (10 + 11 + 12 + 13 + 14)/4 = 15.

This appealing question has a simple answer that turns out to be related to

a certain Diophantine equation considered by Euler, namely

x4 − x2y2 + y4 = z2 (1)

where we are looking for integer solutions. In turn (1) is related to the

possibility of finding four squares as the consecutive terms of an arithmetic

progression, a challenge issued by Fermat in 1640. We’ll unravel this connec-

tion and further address the question of arithmetic progressions with three

parts in other fixed ratios. We close the article with four open questions

which we hope the reader will take as an invitation to further explore some

of the mysteries of Diophantine equations.
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Reduction to a Diophantine equation

So far we have been talking about sequences of integers. We may just as

easily ask these questions for arithmetic progressions of real numbers. By an

n-term arithmetic progression we therefore mean real numbers e1, e2, · · · , en

with common difference ei+1 − ei = ∆ > 0 for 1 6 i < n. If n = a + b + c,

with positive integers a, b, c, let

S1 =
a∑

i=1

ei, S2 =
a+b∑

i=a+1

ei, S3 =
n∑

i=a+b+1

ei (2)

be the sums of the first a, the middle b and the final c terms.

The question we are trying to answer in this article is: What are the

possibilities for the ratios S1 : S2 : S3? In particular, as we investigate

in this section, can we ever have S1 = S2 = S3? Clearly dividing each

term in an arithmetic progression by the same number does not alter the

ratios S1 : S2 : S3 so after dividing by ∆ we may make the simplifying

assumption that the common difference of our progressions is always 1. Using

1 + 2 + · · ·+ n = n(n + 1)/2 we have

2S1 = a(2e1 − 1 + a) = a(2ea+1 − 1− a),

2S2 = b(2ea+1 − 1 + b) = b(2ea+b+1 − 1− b),

2S3 = c(2ea+b+1 − 1 + c).

Setting S1 = S2 we find

2ea+1 − 1 =
a2 + b2

a− b
. (3)

Similarly S2 = S3 implies

2ea+b+1 − 1 =
b2 + c2

b− c
. (4)

Since ea+b+1 = ea+1 + b we may solve for ea+1 in equations (3) and (4) to get

2b =
b2 + c2

b− c
− a2 + b2

a− b
.
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Rearranging we obtain the relation

ab2 + a2b + bc2 + b2c− ac2 − a2c− 2abc = 0. (5)

Note that if any two of the positive integers a, b, c are equal then (5) implies

that all three must be equal. Therefore by (3) and (4) we must have a, b, c

all distinct.

Proposition 1. There exists an arithmetic progression with beginning,

middle and end having equal sums (with a, b and c terms respectively) if and

only if there exist positive distinct integers a, b, c satisfying equation (5).

Proof. We have proved one direction. In the other, given such a, b, c let

ea+1 be the rational number satisfying equation (3) and set e1 = ea+1 − a.

Then, as we have seen, the arithmetic progression e1, e1+1, · · · , e1+a+b+c−1

has the desired property. Also note that, if we like, we can make each term

an integer by multiplying by 2(a− b). This completes the proof.

Suppose we have integers a, b, c satisfying (5). Trying to solve for b we

get

b2(a + c) + b(a− c)2 − ac(a + c) = 0 (6)

which has discriminant

δ = (a− c)4 + 4ac(a + c)2 = a4 + 14a2c2 + c4.

Set p = a + c and q = a − c then δ = q4 + p2(p2 − q2). We have b =

(
√

δ − q2)/(2p) which implies that we must have

p4 − p2q2 + q4 = r2 (7)

for some r. Conversely if p and q are integers satisfying (7) then

a = p(p + q), b =
√

p4 − p2q2 + q4 − q2, c = p(p− q)

are easily shown to satisfy (6). In this way (5) and (6) have solutions if and

only if (7) does. Equations like this, where we are concerned with finding only

integer or only rational solutions, are called Diophantine equations in honor
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of Diophantus of Alexandria who lived in the third century, it is thought [3],

and wrote the Arithmetic where many such equations are solved.

In fact p4 − p2q2 + q4 can be a square only if p = ±q or pq = 0. This is a

result of Euler [4]. For completeness we include an elegant proof by “infinite

descent” of this fact due to Pocklington [5]. The result is also mentioned in

Dickson’s encyclopedic History of the Theory of Numbers [6, p. 638].

This method of proof, first employed by Fermat, is very useful in proving

negative statements such as that a certain equation has no (or only trivial)

integer solutions. As we shall see, from an assumed initial solution to an

equation a new, strictly smaller, solution is constructed. Repeat the argu-

ment and an infinite chain of solutions, descending in size, appears. But

this contradicts the fact that our solutions are bounded positive integers and

hence finite in number. Thus our initial assumption of a solution to the

equation was false.

Pocklington’s proof uses the following well known result parameterizing

Pythagorean triples.

Lemma 2. Let x2 + y2 = z2 for positive integers x, y, z with gcd(x, y) =

1. Necessarily one of x, y (say y) is even and there exist integers u, v with

gcd(u, v) = 1, u > v > 0 such that

x = u2 − v2, y = 2uv, z = u2 + v2.

For a proof see the classic text by Hardy and Wright [7, Theorem 225].

Proposition 3. If p4 − p2q2 + q4 = r2 for positive integers p, q then

p = q.

Proof. Assume that p, q > 0 are integer solutions to the above equation

with gcd(p, q) = 1. Suppose also that q is even (we will treat the case of p, q

odd later) and that pq is minimal. We have

(p2 − q2)2 + (pq)2 = r2 (8)

and gcd(p2 − q2, pq) = 1 so that, by the lemma,

p2 − q2 = u2 − v2, (9)
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pq = 2uv. (10)

Considering the first equation (9) modulo 4 we see that v is even. In plainer

language, since a square must have remainder 0 or 1 when divided by 4, the

only possibility is that v2 is divisible by 4. Next let

α = gcd(p, u), β = gcd(p, v), γ = gcd(q, u), δ = gcd(q, v)

with α, β, γ odd and δ even. We have by (10)

p = αβ, q = 2γδ, u = αγ, v = βδ.

Putting these back into (9) we obtain

β2(α2 + δ2) = γ2(α2 + 4δ2). (11)

We want to demonstrate next that gcd(α2 + δ2, α2 + 4δ2) equals 1 or 3. To

see this suppose d divides both A = α2 + δ2 and B = α2 + 4δ2. Then d

will be a divisor of B − A = 3δ2 and 4A − B = 3α2. Since α and δ are

relatively prime d must be a factor of 3. Taking d as large as possible shows

that gcd(α2 + δ2, α2 + 4δ2) is a factor of 3 as we said. But it cannot be 3

since 3 does not divide α2 + δ2 (squares must have remainders 0 or 1 when

divided by 3). So we’ve managed to show that gcd(α2 + δ2, α2 + 4δ2) = 1.

Combine this with the easy fact that gcd(β, γ) = 1 and we see which parts

of each side of (11) are relatively prime. Hence we must have

β2 = α2 + (2δ)2, (12)

γ2 = α2 + δ2. (13)

Applying the lemma again to (12) we find α = ξ2−η2 and δ = ξη. Replacing

these in (13) we get

(ξ2 − η2)2 + (ξη)2 = γ2.

This is of the same form as the original equation and we see that

ξη = δ < 2γδ = q < pq,
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contradicting the initial claim that pq was minimal and proving that there

are no solutions with p or q even.

We treat the remaining case that solutions p, q are both odd. Equation

(8) and the lemma now imply that

p2 − q2 = 2uv, pq = u2 − v2,

provided p 6= q. Also one of u, v is necessarily even. Therefore

(u2 − v2)2 + (uv)2 = (pq)2 +
(p2 − q2)2

4
=

(
p2 + q2

2

)2

which we have already seen is impossible. This completes the proof of the

proposition.

So, if we look for a solution to (5) with positive distinct integers a, b, c

and a > c > 0 say, then we must have p = a + c = a − c = q implying that

c = 0. Thus we have answered our original question.

Proposition 4. It is impossible for an arithmetic progression to have

equal beginning, middle and end sums.

Four squares in arithmetic progression

Fermat wrote to Mersenne in May 1640, [8]. He included four challenges for

Frenicle de Bessy, a number theorist in Paris:

Pour savoir si M. Frenicle ne procède point par tables, proposez

lui de

(i) Trouver un triangle rectangle duquel l’aire soit un nombre

quarré;

(ii) Trouver deux quarréquarrés desquels la somme soit quarréquarrée;

(iii) Trouver quatre quarrés en proportion arithmétic continue;

(iv) Trouver deux cubes desquels la somme soit cube;
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S’il vous répond que jusques à un certain nombre de chiffres il a

éprouvé que ces questions ne trouvent point de solution, assurez-

vous qu’il procède par tables.

The first asks for a right-angled triangle (with integer length sides) whose

area is a square. Using lemma 2 this reduces to finding integer solutions for

x4 − y4 = z2 as shown in [6, p. 615].

The fourth and second ask for solutions to x3 + y3 = z3 and x4 + y4 = z4.

This was only the second time he had mentioned to his correspondents these

cases of what became known as his Last Theorem. In about 1636 he sent

Mersenne the same two problems and asked him to propose them to St.

Croix. According to Dickson it was probably soon after, in 1637, that he

made his famous note in the margin of his copy of Diophantus’ Arithmetic.

The third challenge asks for four squares in arithmetic progression and

this turns out to be related to our original question. Fermat seems to have

been the first to look for such squares [6, p. 440]. That they do not exist

follows from the fact that x4 − x2y2 + y4 = z2 has only trivial solutions. We

cannot be sure, but this might be what Fermat had in mind.

We can prove that four squares cannot be in arithmetic progression quite

easily using proposition 4 and the fact that the sum of the first n odd numbers

is the nth square

1 + 3 + 5 + · · ·+ (2n− 1) = n2.

(This has an easy geometric proof - can you find it? See Nelsen’s proof

without words [9] for something similar.) Thus if A2, B2, C2, D2 are four

consecutive terms of an arithmetic progression with 0 < A < B < C < D we

can take the sequence of consecutive odd numbers 2A+1, 2A+3, · · · , 2D−1

and see that

(2A + 1) + (2A + 3) + · · ·+ (2B − 1) = (2B + 1) + (2B + 3) + · · ·+ (2C − 1)

= (2C + 1) + (2C + 3) + · · ·+ (2D − 1),

which contradicts proposition 4.
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By the same reasoning we cannot have four triangular numbers in arith-

metic progression. More generally it follows from proposition 4 that for any

integers A,B, C, D and any real r we cannot have

A(A + r), B(B + r), C(C + r), D(D + r)

in arithmetic progression.

Euler’s contribution

Euler proved in 1780 [4] that the product of four consecutive positive terms

of an arithmetic progression cannot be a square. We will apply this result

to find another proof of proposition 4. Assume that we have an arithmetic

progression with equal beginning, middle and end sums. It leads to a solution

of (6). We may rewrite (6) as

b(a− c)2 = (a + c)(ac− b2).

Letting p = a + c, q = a− c as before we find

4bq2 = p(p2 − q2 − 4b2)

and consequently

q2(p + 4b) = (p− 2b)p(p + 2b).

In terms of a, b, c this is

(a− c)2(a + c + 4b) = (a + c− 2b)(a + c)(a + c + 2b).

If we multiply both sides of the above by (a + c + 4b) we see that

(a + c− 2b)(a + c)(a + c + 2b)(a + c + 4b)

is a square. According to Euler this is impossible and we have a second proof

of proposition 4.
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To close this circle of ideas we prove Euler’s result. Suppose that there

exist relatively prime integers m, n > 1 so that

m(m + n)(m + 2n)(m + 3n) = r2. (14)

We must have gcd(m,m+2n) dividing 2, gcd(m+n,m+3n) dividing 2 and

gcd(m,m + 3n) dividing 3, eight possibilities in all. This means that any

prime bigger than 3 cannot appear in different terms of the factorization on

the left-hand side of (14). Thus m, m + n, m + 2n and m + 3n are each

squares except for possible extra factors of 2 or 3. Checking the eight cases

we see, for example, that {m,m + n,m + 2n,m + 3n} = {2A2, B2, 2C2, D2}
is not possible. This is because dividing 2A2, B2, 2C2 and D2 by 4 produces

remainders 2, 1, 2 and 1 if each of A,B, C and D are odd. But no arithmetic

progression can have such remainders. One of A,B,C and D may be even but

here too, checking each case, the remainders do not correspond to arithmetic

progressions. It is routine to verify, modulo 3 and 4, that the only three

possibilities for m, m + n, m + 2n and m + 3n are

(i) {A2, B2, C2, D2}

(ii) {6A2, B2, 2C2, 3D2} or

(iii) {3A2, 2B2, C2, 6D2}

with A, B, C and D relatively prime in pairs. We know that (i) is impossible.

We’ll prove that (ii) cannot occur. Employ the identity

2(m(m + 2n)− (m + n)(m + 3n)) = m(m + n)− (m + 2n)(m + 3n)

from [5] to get

4A2C2 −B2D2 = A2B2 − C2D2. (15)

Set

α = 2AC, β = BD, γ = AB + CD and δ = AB − CD. (16)
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Then we obtain α2 − β2 = γδ from (15) and 2αβ = γ2 − δ2 from (16).

Therefore

(α2 − β2)2 + α2β2 = ξ2

for some ξ and by proposition 3 we must have α = β which yields a contra-

diction. Part (iii) follows with an identical argument (as does part (i)) and

this completes the proof.

Euler [4] used a slightly different approach. See also the discussion in

Dickson [6, p. 635]. Interestingly, finding integer solutions to the general

equation

m(m + n)(m + 2n) · · · (m + (k − 1)n) = rw, (17)

(or showing they don’t exist) has resisted many authors. The case with n = 1

has a long history as described in Johnson [10] where relatively simple proofs

of various cases are given. It was eventually completely settled by Erdös and

Selfridge in a paper entitled “The product of consecutive integers is never

a power”, [11]. Recently Saradha [12] has shown that the only nontrivial

solution to (17) (with k > 3 and n 6 22 and w = 2) has (m,n, k) = (18, 7, 3).

Back to Fermat’s four challenges

Returning to Fermat’s four challenges, we have seen that their impossibility

follows, respectively, from the lack of nontrivial solutions to the Diophantine

equations

(i) x4 − y4 = z2,

(ii) x4 + y4 = z2,

(iii) x4 − x2y2 + y4 = z2,

(iv) x3 + y3 = z3.

Frenicle did finally prove that x4 − y4 = z2 has no nontrivial solutions with

help from Fermat, [6, p. 617]. He also came up with a formula supplying
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three squares in progression [6, p. 435]. But it fell to Euler to prove the

impossibility of the first two cases of Fermat’s Last Theorem [6, p. 545, p.

618] and that four squares cannot be in a progression as we have seen [4].

Did Fermat himself have proofs? He certainly claimed that all four had

only trivial solutions. We can only know with certainty that he had proved

(i) and (ii). These two proofs, essentially identical, are rare examples of

Fermat supplying his detailed arguments [6, p. 615], [13, p. 79]. Quoting

from Weil, [13, p. 114]: “At that early date, Fermat had perhaps no more

than plausibility arguments for the fact that these problems have no solution;

but eventually he must have obtained a formal proof also for the third one,

since we are told so by Billy in his Inventum Novum”, [14].

We cannot be sure what this formal proof of (iii) was since no trace of it

appears in Fermat’s writings. Weil laments that Billy did not find out more:

“How grateful we should be to the good Jesuit, had he shown some curiosity

toward such ‘negative’ statements ...”

One candidate is that he worked directly with the equation x4 − x2y2 +

y4 = z2 and showed it has only trivial solutions using a proof like that of

proposition 3. This is appealing because the equations (i) to (iv) above are

so similar.

A second way, outlined by Weil and based on subsequent results of Euler

that Fermat may have anticipated, is to work with the elliptic curve

y2 = −x(x− 1)(x− 4). (18)

It may be shown by descent that this curve has only trivial rational solutions.

This implies that four squares cannot be in arithmetic progression, as shown

in [13, pp. 130 - 149]. It is an easy exercise to transform (14) into (18). This

is done by Erdélyi [15].

A third approach, due to Erdélyi [15], is to rewrite (14) as

(m2 + 3mn + n2)2 = r2 + n4. (19)

He then shows, using lemma 2, that any solution in positive integers of

(19) is impossible because each solution yields another making the quantity
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(m+n)(m+2n) smaller. This again is a classical proof by descent that Fermat

could have used (he, of course, invented this technique). So, in summing up,

there is no shortage of plausible ways Fermat could have proved this theorem.

As for the final challenge (iv), the proof of the impossibility of x3+y3 = z3

can be made to follow the same general lines but is harder than the others.

It was probably not out of the reach of the ‘Prince of Amateurs’ though, see

the discussion in Mahoney’s biography of Fermat [16, p. 357] and also Weil’s

thoughts [13, p. 118].

Arithmetic progressions with other ratios

We extend the discussion by letting (S1 : S2 : S3) denote the ratios of the

sums (2). We have shown that (1 : 1 : 1) is impossible. Here are some ratios

involving the numbers 1, 2, 3 that are possible:

(1 : 1 : 2) 4, 5, 6; 7, 8; 9, 10, 11,

(1 : 1 : 3) 1, 2; 3; 4, 5,

(1 : 2 : 2) 6, 7, 8; 9, 10, 11, 12; 13, 14, 15

(1 : 2 : 3) 1; 2; 3,

(1 : 3 : 2) 3; 4, 5; 6,

(1 : 3 : 3) 2, 3; 4, 5, 6; 7, 8,

(2 : 1 : 3) 12, 13, 14, 15, 16; 17, 18; 19, 20, 21, 22, 23. (20)

Of course by changing the signs of each term in a sequence we can get the

ratios in reversed order so that for example −5,−4; −3; −2,−1 yields (3 :

1 : 1). As with proposition 1 we may reduce the existence question to a

Diophantine equation.

Proposition 5. There exists an arithmetic progression with three parts

of a, b and c terms and (S1 : S2 : S3) = (x : y : z) if and only if there exist

positive integers a, b, c satisfying

(xb− ya)c(b + c) + (zb− yc)a(a + b) = 0 (21)
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with the restriction xb 6= ya (or equivalently zb 6= yc).

We leave the proof to the reader. If this sequence exists and its terms

differ by 1 then, similarly to (3), its first term e1 must satisfy

2e1 =
ya2 + xb2

ya− xb
− 2a + 1.

In the examples (20) we always have a = c. This is not a coincidence.

When a = c equation (21) reduces to xb − ya = ya − zb or 2ya = (x + z)b

and the restriction becomes x 6= z. This yields

Proposition 6. For positive integers x, y, z with x 6= z there exists an

arithmetic progression with three parts in ratio (S1 : S2 : S3) = (x : y : z).

Proof. We may simply take a = c = x + z and b = 2y. By proposition 5

the desired progression exists completing the proof.

From this we obtain, for example

(2 : 2 : 3) 16, 17, 18, 19, 20; 21, 22, 23, 24; 25, 26, 27, 28, 29,

(2 : 3 : 3) 20, 21, 22, 23, 24; 25, 26, 27, 28, 29, 30; 31, 32, 33, 34, 35.

Note that, since (21) is homogeneous in a, b and c, any single solution yields

an infinite family of solutions λa, λb, λc for λ a positive integer.

Next we look for progressions with ratios (x : y : x). One way to solve (21)

is to look for solutions of the form c(b+c) = wa(a+b) and xb−yc = w(ya−xb).

From the first of these equations let c = a + b and wa = b + c. Therefore

a = 2, b = w − 1, c = w + 1 and we require w > 1. This yields arithmetic

progressions with ratios (3w + 1 : w2 − 1 : 3w + 1) parameterized by w > 1.

This solution, (when w = 5 and after multiplying by −2) gives

(2 : 3 : 2) 3, 5, 7, 9, 11, 13; 15, 17, 19, 21; 23, 25.

A simpler example for this ratio is 1, 2, 3; 4, 5; 6. The remaining possibilities

for ratios involving 1, 2, 3 are (1 : 2 : 1), (1 : 3 : 1), (2 : 1 : 2), (3 : 1 : 3) and

(3 : 2 : 3). Trying to solve (21) for b we have

b2(xc + za) + b(za2 + xc2 − 2yac)− yac(a + c) = 0.

13



A necessary and sufficient condition for integer solutions is that the discrim-

inant

z2a4 + x2c4 + (2(2y + x)(2y + z)− 4y2)a2c2

is a square. Looking for the ratio (2 : 1 : 2), for example, we need a4 +

7a2c2+c4 to be a square. Using the techniques of proposition 3 it can be seen

[5], [17] that this is impossible. Thus no arithmetic progression exists with

beginning and end sums twice the middle sum. The other four possibilities

are unresolved.

We finish with four challenges to the reader:

(i) For which values of x, y is (x : y : x) a set of possible ratios for an

arithmetic progression?

(ii) For positive integers x, y, z with x 6= z is there a way to construct an

arithmetic progression with the ratio (x : y : z) and strictly positive

terms? For example with (x : y : z) = (3 : 2 : 1) proposition 6 yields

−3; −2;−1 but with more work we find

(3 : 2 : 1) 9, 10, 11, · · · , 24, 25, 26; 27, 28, 29, 30, 31, 32, 33; 34, 35, 36.

(iii) How many arithmetic progressions (with common difference ∆ = 1 say

and parts of any size a, b, c but with gcd(a, b, c) = 1) can represent a

given ratio (x : y : z)?

(iv) When is it possible for the product of m consecutive terms of an arith-

metic progression to be an nth power?
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