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1. Introduction

In some recent papers (cf. [G2], [O], [CG], [GG], [DO]) the properties of new
types of Eisenstein series are investigated. Motivated by the abc conjecture, these
series were originally introduced by Goldfeld ([G1], [G3]) in order to study the
distribution of modular symbols. Let f(z) be a fixed cusp form of weight 2 for
Γ = Γ0(N), say, the Hecke congruence group of level N . Then the defining formula
for the series is

E∗(z, s) =
∑

τ∈Γ∞\Γ
〈τ, f〉Im(τz)s,

for z in the upper half-plane H and complex s with Re(s) > 2. Here

Γ∞ =
{(

1 m
0 1

)
: m ∈ Z

}

is the stabilizer of the cusp ∞ and

〈τ, f〉 =
∫ τw0

w0

f(w)dw

is called a modular symbol. Its definition is independent of w0 in H∗ = H∪Q∪{i∞}.
The function E∗ satisfies the equation

E∗(γz, s) = E∗(z, s) + 〈γ, f〉E(z, s) for all γ ∈ Γ (1.1)

where
E(z, s) =

∑

τ∈Γ∞\Γ
Im(τz)s,
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the usual Eisenstein series, satisfies E(γz, s) = E(z, s).
From equation (1.1) and the above it is clear that

E∗(γδz, s)− E∗(γz, s)− E∗(δz, s) + E∗(z, s) = 0 for all γ, δ ∈ Γ.

The form of this equation motivated us to study functions with similar transforma-
tion properties.

We will work more generally with Γ ⊂ PSL2(R) a Fuchsian group of the first
kind. See the explanation of these in Section 2.3 of [I]. As described there we may
choose a fundamental polygon F to represent Γ\H. We are primarily interested in
groups Γ that contain parabolic elements. The surface Γ\H will therefore not be
compact and F∩R̂ will be a finite set of inequivalent cusps a, b, . . . for R̂ = R∪{∞}.
For each cusp a we may choose a scaling matrix σa ∈ SL2(R) that maps the upper
part of the strip F∞ = {z ∈ H : −1/2 ≤ Re(z) ≤ 1/2} to the neighborhood of a in
F (and hence σa∞ = a).

Next we define the spaces of functions that we are concerned with. Let k be a
fixed integer. If v is a character of Γ and F a function on H then for all γ ∈ Γ we set
(F |k,vγ)(z) = v(γ)F (γz)j(γ, z)−k and extend the action of Γ to Z[Γ] by linearity.
Here j(

( ∗ ∗
c d

)
, z) = cz + d.

Definition I. Let Mk(Γ, v) be the space of maps f : H → C with the following
properties:

(i) f is holomorphic,
(ii) f |k,v(γ − 1) = 0 for all γ in Γ,
(iii) f has at most polynomial growth at the cusps.

The precise meaning of (iii) is that f |σa(z) ¿ Im(z)n for each cusp a and some
constant n with z in the upper part of the strip F∞. These are the modular forms
of weight k and character v for Γ. We denote by M̃k(Γ, v) the space obtained by
relaxing (i) to include smooth functions. The non-holomorphic Eisenstein series are
examples. (In this paper ∼ will always signify a smooth space and its absence a
holomorphic space.)

Definition II. In a similar manner we may define the space M̃2
k (Γ, v) of maps

f : H → C satisfying:

(i) f is smooth,
(ii) f |k,v(γa − 1)(γb − 1) = 0 for all γa, γb in Γ,
(iii) for each γ in Γ, (f |k,vγ)(z) has at most polynomial growth at the cusps,
(iv) f |k,v(π − 1) = 0 for all parabolic π in Γ.
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It can be shown that E∗(z, s) is an example of such a function. If we call the
holomorphic subspace M2

k (Γ, v) then we have the inclusions

Mk(Γ, v) ⊂ M2
k (Γ, v) ⊂ M̃2

k (Γ, v),

M̃k(Γ, v) ⊂ M̃2
k (Γ, v).

Remarks.

• Condition (iv) in the definition of M̃2
k (Γ, v) was included to simplify the state-

ments of the results and because the examples we have in mind so far satisfy it.
It also ensures the existence of Fourier expansions of the functions at each cusp
provided v is trivial on the parabolic elements.
• Condition (iii) may be strengthened by replacing polynomial growth with ex-

ponential decay,
(f |k,vσa)(z) ¿ e−c Im(z)

for each cusp a and some constant c > 0 with, as before, z in the upper part of
the strip F∞. We obtain (in an obvious notation) the spaces of smooth functions
S̃k(Γ, v), S̃2

k(Γ, v) and their holomorphic versions Sk(Γ, v) and S2
k(Γ, v).

• It is also interesting to consider other spaces, for example smooth functions f

such that f |k,v(γ − 1) ∈ Mk(Γ, v).

We call elements of M2
k (Γ, v) or M̃2

k (Γ, v) second-order modular forms and ele-
ments of S2

k(Γ, v) or S̃2
k(Γ, v) second-order cuspforms. The names were suggested

by D. Zagier in whose work with P. Kleban on percolation theory such functions
also appear.

In this paper we show that these functions are much more basic in terms of the
usual modular forms than one might think at first. In fact, their role is analogous
to that of Eichler integrals with respect to period polynomials.

Another reason for the interest of second order modular forms is that the action
|k,v induces a natural representation of the abelianization of Γ in M̃2

k (Γ, v). Indeed,
let ρ : Γ → End(M̃2

k (Γ, v)) be such that ρ(γ)(f) = f |k,vγ for all γ ∈ Γ, f ∈ M̃2
k (Γ, v).

By definition, f |k,vγδ = f |k,vγ + f |k,vδ − f , so

f |k,vγδ(δγ)−1 = f |k,v(γ + δ − 1)(δγ)−1 = f |k,vδγ(δγ)−1 = f.

Similarly for the other spaces of second-order modular forms we will examine.
Thanks to our work in Section 2 we can then associate such a representation to
a usual modular form.
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The paper is organized as follows. In Section 2 we determine the structure of the
spaces M̃2

k (Γ, v) and S̃2
k(Γ, v). For example, if g is the genus of Γ\H then an easy

to state corollary of the more precise Theorem 2.3 is

Corollary 2.4. As R-vector spaces we have

M̃2
k (Γ, v) ∼= ⊕2g

i=0M̃k(Γ, v).

Then we turn to functions that satisfy the more general equation

f |k,v(γ − 1)(δ − 1)(ε− 1) = 0 for all γ, δ, ε ∈ Γ

rather than f |k,v(γ − 1)(δ − 1) = 0, (γ, δ ∈ Γ). If the space of such functions for
which f |k,v(γδ− δγ) = 0 is called M̃3

k (Γ, v)ab then a consequence of Theorem 2.5 is
that

M̃3
k (Γ, v)ab

∼=R ⊕(2g+1)(g+1)
i=1 M̃k(Γ, v).

Furthermore, we give a partial description of the class of functions f such that
f |k,vp(γ, . . . ) = 0 where p is an arbitrary polynomial in Z[x1, . . . , xn] with xi non-
commuting variables.

In Section 3 we give an analogous treatment of the subspace of second-order mod-
ular forms that are also eigenfunctions of the Laplacian for a particular eigenvalue.
These second-order Maass forms arise as residues of the function

E∗(z, s) =
∑

τ∈Γ∞\Γ
|〈τ, f〉|2Im(τz)s

studied in [G2] for example. It is hoped that a deeper understanding of these
residues will help establish new results about the distribution of modular symbols.

Finally in Section 4 we show that there is a natural extension of the definition
of Hecke operators that applies to second-order modular forms. These Hecke op-
erators have the same multiplicativity and commutativity properties as the usual
Hecke operators and hence the Fourier coefficients of their eigenfunctions have mul-
tiplicativity properties analogous to those of the usual Hecke eigenforms.

2. The structure of M̃2
k (Γ, v)

To obtain a description of the structure of M̃2
k (Γ, v) we use the set of generators of

Γ given by Fricke and Klein in, say, [I]. Specifically, if Γ\H has genus g, r elliptic fixed
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points and m cusps, then there are 2g hyperbolic elements γi, r elliptic elements
εi and m parabolic elements πi generating Γ. Furthermore, these generators satisfy
the r + 1 relations:

[γ1, γg+1] . . . [γg, γ2g]ε1 . . . εrπ1 . . . πm = 1, ε
ej

j = 1 (2.1)

for 1 ≤ j ≤ r and integers ej ≥ 2. Here [a, b] denotes the commutator aba−1b−1 of
a and b.

Recall the definition of the modular symbol 〈·, ·〉 : Γ×M2(Γ) → C. If we take f1

in M2(Γ) and f2 in S2(Γ) then the map Lf1,f2 : Γ → C with

Lf1,f2(γ) = 〈γ, f1 + f2〉+ 〈γ, f1 − f2〉

is an element of Hom(Γ,C). The Eichler-Shimura isomorphism theorem (for weight
2) states that the map

(f1, f2) 7→ Lf1,f2

is actually an R-vector space isomorphism:

M2(Γ)⊕ S2(Γ) ∼= Hom(Γ,C).

Also if we are only interested in homomorphisms Γ → C that are zero on the
parabolic elements (call this space Hom0(Γ,C)) then the same map gives

S2(Γ)⊕ S2(Γ) ∼= Hom0(Γ,C).

In particular for any L in Hom0(Γ,C) there exist f, g in S2(Γ) so that if we define

Λ(z) :=
∫ z

i∞
f(w)dw +

∫ z

i∞
g(w)dw (2.2)

then L(γ) = Λ(γz) − Λ(z) for all γ in Γ and all z in H∗. With the 2g hyperbolic
generators γi we next define corresponding homomorphisms Li such that Li(γi) = 1
and Li(γ) = 0 for all other generators γ of Γ. Each Li can be expressed as Li(γ) =
Λi(γz)− Λi(z) with Λi defined as before with two cusp forms.

Lemma 2.1. For each γ ∈ Γ we have the map f 7→ f |k,v(γ − 1). This map sends
M̃2

k (Γ, v) to M̃k(Γ, v).

The proof follows directly from the definitions of these spaces. In a similar
manner these maps send

M2
k (Γ, v) → Mk(Γ, v), S̃2

k(Γ, v) → S̃k(Γ, v), S2
k(Γ, v) → Sk(Γ, v).
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Lemma 2.2. For f a second-order modular form we have fk,v(ε − 1) = 0 for all
elliptic elements of Γ.

Proof: If εn = 1 then

f |k,v(ε− 1) = f |k,v(εn+1 − 1)

= f |k,v(ε− 1)(1 + ε + ε2 + · · ·+ εn)

= (n + 1)f |k,v(ε− 1).

Therefore nf |k,v(ε− 1) = 0 and the lemma is proved.

Theorem 2.3. (“Chinese Remainder Theorem”) For f in M̃2
k (Γ, v) we let ψ denote

the map sending f to the vector (f |k,v(γ1−1), . . . , f |k,v(γ2g−1)). Then the following
sequence of maps is exact:

0 → M̃k(Γ, v) ↪→ M̃2
k (Γ, v)

ψ→ ⊕2g
i=1M̃k(Γ, v) → 0.

In other words, for each set {fi; i = 1, . . . , 2g} ⊂ M̃k(Γ, v)2g there is a h ∈ M2
k (Γ, v)

(unique up to addition by a form in M̃k(Γ, v)) such that fi = h|k,v(γi − 1), (i =
1, . . . , 2g), and conversely.

Proof: To prove the exactness of the middle term we observe that if f is in
the kernel of ψ then we must have f |k,v(γ − 1) = 0 for all γ in Γ since it is true
for each of the parabolic, elliptic and hyperbolic generators of the group. Thus
Ker(ψ) = M̃k(Γ, v).

Finally, to prove that ψ is surjective we note that for any vector V = (f1, . . . , f2g)
in ⊕2g

i=1M̃k(Γ, v) we have ψ(
∑2g

i=1 fiΛi) = V . It is routine to check that
∑2g

i=1 fiΛi

is in M̃2
k (Γ, v). This completes the proof of Theorem 2.3.

The same proof gives the exact sequence

0 → S̃k(Γ, v) ↪→ S̃2
k(Γ, v)

ψ→ ⊕2g
i=1S̃k(Γ, v) → 0.

For the holomorphic spaces M2
k (Γ, v) and S2

k(Γ, v) the above proof fails since Λi(z)
is not always holomorphic. In light of this difficulty it is natural to define the hybrid
subspace M̃2

k (Γ, v)∗ ⊂ M̃2
k (Γ, v) of smooth functions that satisfy

f |k,v(γ − 1) ∈ Mk(Γ, v) for all γ ∈ Γ

and similarly for S̃2
k(Γ, v)∗. The proof of Theorem 2.3 then gives

0 → M̃k(Γ, v) ↪→ M̃2
k (Γ, v)∗

ψ→ ⊕2g
i=1Mk(Γ, v) → 0,

0 → S̃k(Γ, v) ↪→ S̃2
k(Γ, v)∗

ψ→ ⊕2g
i=1Sk(Γ, v) → 0.

An easy consequence of Theorem 2.3 is
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Corollary 2.4. We have the R-vector space isomorphism

M̃2
k (Γ, v) ∼= ⊕2g

i=0M̃k(Γ, v)

and for any f ∈ M̃2
k (Γ, v) there exist unique hi ∈ M̃k(Γ, v) for 0 ≤ i ≤ 2g such that

f =
2g∑

i=0

hiΛi

where the functions Λi are as defined earlier and for convenience we set Λ0(z) = 1.
Similar results hold for the spaces S̃k(Γ, v), M̃k(Γ, v)∗ and S̃k(Γ, v)∗.

A natural generalization of second-order forms satisfying the transformation
property:

f |k,v(γa − 1)(γb − 1) = 0 for all γa, γb ∈ Γ

in Definition II would be functions satisfying the new condition (ii),

f |k,v(γa − 1)(γb − 1)(γc − 1) = 0 for all γa, γb, γc ∈ Γ.

We might call such functions third-order modular forms and in a consistent notation
write M̃3

k (Γ, v), S̃3
k(Γ, v) etc.

We may characterize third-order modular forms in an analogous way to Theorem
2.3 but there is an important difference. While it was true for f in M̃k(Γ, v) or
M̃2

k (Γ, v) that f |k,v(γaγb−γbγa) = 0 this is no longer necessarily the case for third-
order modular forms.

If f ∈ M̃3
k (Γ, v) then it is easy to check that the analogs of Lemmas 2.1 and 2.2

are true. In other words M̃3
k (Γ, v) → M̃2

k (Γ, v) under the map f 7→ f |k,v(γ − 1) for
each γ ∈ Γ and f |k,v(ε− 1) = 0 for all elliptic ε ∈ Γ. Define the map

ψ∗ : M̃3
k (Γ, v) → ⊕(2g)2

i=1 M̃k(Γ, v)

with
ψ∗(f) =

(
f |k,v(γi − 1)(γj − 1)

)
1≤i,j≤2g

.

Set δij = 1 if i = j and zero otherwise. If there exist smooth functions Λij(z) (with
at most polynomial growth at the cusps) satisfying, for 1 ≤ i, j, m, n ≤ 2g,

Λij(γmγnz)− Λij(γmz)− Λij(γnz) + Λij(z) = δimδjn (2.3)
7



then
0 → M̃2

k (Γ, v) ↪→ M̃3
k (Γ, v)

ψ∗→ ⊕(2g)2

i=1 M̃k(Γ, v) → 0

by essentially the same proof as Theorem 2.3 and

f =
2g∑

i=0

hiΛi +
∑

1≤i,j≤2g

hijΛij

for unique hi, hij ∈ M̃k(Γ, v). Unfortunately the functions Λij satisfying 2.3 remain
to be found. Without them the above results are not valid.

The products Λi(z)Λj(z) are very close to satisfying (2.3). Their only defect is
that they fail to distinguish between γaγb and γbγa. They do allow us to prove the
following

Theorem 2.5. Let M̃3
k (Γ, v)ab ⊂ M̃3

k (Γ, v) denote the subspace of third-order mod-
ular forms f that satisfy the additional abelian condition

f |k,v(γaγb) = f |k,v(γbγa) for all γa, γb ∈ Γ.

Then f =
∑2g

i=0

∑2g
j=i hijΛiΛj for unique hij ∈ M̃k(Γ, v).

Proof: This theorem follows from our above discussion and the formula

Λi(γmγnz)Λj(γmγnz)− Λi(γmz)Λj(γmz)− Λi(γnz)Λj(γnz) + Λi(z)Λj(z)

= ΛiΛj |0,1(γm − 1)(γn − 1) = δimδjn + δjmδin.

To prove this formula we write

Λi(γmz)Λj(γmz)− Λi(z)Λj(z)

= Λi(γmz)(Λj(γmz)− Λj(z)) + (Λi(γmz)− Λi(z))Λj(z)

δjmΛi(γmz) + δimΛj(z)

and so

δjmΛi(γmγnz) + δimΛj(γnz)− δjmΛi(γmz)− δimΛj(z)

= δjm(Λi(γmγnz)− Λi(γmz)) + δim(Λj(γnz)− Λj(z))

= δjmδin + δimδjn

as required, completing the proof.
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These ideas extend to higher order modular forms. More generally if p is a fixed
polynomial in Z[x1, x2, . . . , xn], for noncommuting variables x1, . . . , xn, consider
replacing condition (ii) in Definition II with

f |k,vp(γa, γb, . . . ) = 0 for all γa, γb · · · ∈ Γ.

Simple examples have p(γ) = γn − 1 or p(γa, γb) = γaγb − γa. Label these spaces
M̃k(N, v, p), S̃k(N, v, p) etc. For general polynomials we cannot give a simple char-
acterization of them. However, some simple propositions may be proved.

Proposition 2.6. For a fixed p ∈ Z[x1, x2, . . . , xn] we have M̃k(Γ, v) ⊂ M̃k(Γ, v, p)
provided M̃k(Γ, v, p) 6= 0.

Proof: For every f ∈ M̃k(Γ, v) we have f |k,vγ = f for all γ ∈ Γ. Therefore
f |k,vp(γa, . . . ) = f |k,vA, where A is the sum of coefficients of p. However, A must
be 0 because if g ∈ M̃k(Γ, v, p) is non-zero, then g|k,vp(γa, γb, . . . ) = 0 for all
γa, γb · · · ∈ Γ and, in particular, for γa = γa = · · · = 1, the identity in Γ.

In the opposite direction we have

Proposition 2.7. If p has exactly two terms with coefficients summing to zero then
there exists a subgroup Γp of Γ such that f |k,vp(γa, γb, . . . ) = 0 for all γa, γb, . . . in
Γ if and only if f |k,v(γ − 1) = 0 for all γ in Γp.

Proof: The polynomial p has the form nδ1 − nδ2 with n in Z and δ1, δ2 made
up of combinations of elements of Γ. Clearly we may replace p by δ1 − δ2. Also
replacing z by δ−1

2 z we see that the functions f must satisfy f |k,v(δ1δ
−1
2 − 1) = 0.

This is equivalent to f |k,v(γ − 1) = 0 for all γ in the group generated by elements
of the form δ1δ

−1
2 since if f |k,v(γa − 1) = 0 and f |k,v(γb − 1) = 0 then

f |k,v(γaγb − 1) = f |k,v((γa − 1)γb + (γb − 1)) = 0.

This completes the proof.
It would be interesting to characterize M̃k(Γ, v, p) when p is a more complicated

polynomial, for example

p(γa, γb) = (γa − 1)(γb − 1) + (γb − 1)(γa − 1).
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3. Second-order Maass cusp forms

For simplicity in the following we restrict ourselves to the case k = 0 and v ≡ 1,

so we write | rather than |0,v. In this situation we shall call S̃2
0(Γ, 1) simply A2(Γ\H).

Let
∆ = −4y2∂z̄∂z

be the hyperbolic Laplace operator. We call a function f in A2(Γ\H) a second-order
Maass forms with eigenvalue λ if (∆ + λ)f = 0. The set of all such functions we
denote by A2

λ(Γ\H). Condition (iv) in the definition of S̃2
0(Γ, 1) implies that any

member f has a Fourier expansion at every cusp. We call f a second-order Maass
cuspform if the constant coefficient of f at each cusp is identically zero. Denote the
space of second-order Maass cuspforms of eigenvalue λ by C2

λ(Γ\H).
To determine the structure of C2

λ(Γ\H) we first fix some notation. We let L(Γ\H)
denote the space of automorphic functions on Γ\H which are square-integrable with
respect to the measure

dµ(z) =
dxdy

y2
, z = x + iy.

The subspace of automorphic eigenfuctions of the Laplacian with eigenvalue λ is
denoted by Cλ(Γ\H). We also fix orthonormal eigenbases {gi} and {ui} for S2(Γ)
and Cλ(Γ\H), respectively. These bases are orthonormal with respect to the usual
Petersson scalar product

〈g, h〉 :=
∫

Γ\H
ykg(z)h(z) dµz

where k is the weight.
Since the hyperbolic Laplacian is SL2(R)-invariant, it follows that, for f ∈

C2
λ(Γ\H), the function z 7→ f(γz) − f(z) is in Cλ(Γ\H). Thus, as in the proof

of surjectivity in Theorem 2.3 we can prove,

Proposition 3.1. Let f ∈ C2
λ(Γ\H). Then there exist complex constants {αij} and

{βij} such that, for all γ ∈ Γ,

f(γz) = f(z) +
∑

i,j

uj(z)
(
αij〈γ, gi〉+ βij〈γ, gi〉

)
.

We now give a characterization of the quotient C2
λ(Γ\H)/Cλ(Γ\H) analogous to

that given in Theorem 2.3.
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Let first f be an element of C2
λ(Γ\H). If {αij} and {βij} are the constants asso-

ciated to f by Proposition 3.1, define the function

f0(z) :=
∑

i,j

uj(z)

(
αij

∫ z

i∞
gi(w)dw + βij(

∫ z

i∞
gi(w)dw)

)
. (3.1)

We note that, since we have fixed bases for S2(Γ) and Cλ(Γ\H), the function

f0(z) = f0(z;λ, {αij}, {βij})

is completely determined by the complex numbers {αij} and {βij} and the eigen-
value λ.

Lemma 3.2. The function G := f − f0 is in L(Γ\H).

Proof: The automorphicity of G is obvious from Eq. (3.1) and Proposition 3.1.
The square integrability follows from the rapid decay of both f and f0 at the cusps.
This completes the proof.

Thus we have characterized the function f in C2
λ(Γ\H) modulo the square inte-

grable automorphic function G. To go further, we quickly review the spectral theory
of L(Γ\H).

Let
Ea(z, s) =

∑

γ∈Γa\Γ
Im(σ−1

a γz)s

be the real analytic Eisenstein series for Γ associated to the stabilizer Γa of the
cusp a. Then the spectral theorem for L(Γ\H) says that there exists an orthonormal
set of eigenforms η1, η2, ... with corresponding eigenvalues λ1, λ2, ... such that any
u ∈ L(Γ\H) has the decomposition

u(z) =
〈u, 1〉
〈1, 1〉 +

∞∑

j=1

〈u, ηj〉ηj(z) +
1
4π

∑
a

∫ +∞

−∞
〈u,Ea(·, 1/2 + ir)〉Ea(z, 1/2 + ir)dr,

(3.2)
where the second sum is over a set of inequivalent cusps.

Now, with f = f0 −G as above,

0 = (∆ + λ)f(z)

= (∆ + λ)(f0 −G)(z)

=
∑

4y2 (αijgi(z)∂z̄uj(z) + βijgi(z)∂zuj(z))− (∆ + λ)G(z).
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Hence
(∆ + λ)G = H,

say, where

H(z) = H(z;λ, {αij}, {βij}) = −
∑

4y2 (αijgi(z)∂z̄uj(z) + βijgi(z)∂zuj(z)) .

(3.3)
Expressing both G and H in the form (3.2) and equating the coefficients, we get

(λ− λj)〈G, ηj〉 = 〈H, ηj〉

and
(λ + (1/4 + r2))〈G,Ea(·, 1/2 + ir)〉 = 〈H, Ea(·, 1/2 + ir)〉,

for all j, a and r > 0. In particular,

〈H(·;λ, {αij}, {βij}), η〉 = 0, for all η ∈ Cλ(Γ\H) (3.4)

and

〈H(·;λ, {αij}, {βij}), Ea(·, 1/2 + iκ)〉 = 0 for all cusps a, λ = −(1/4 + κ2). (3.5)

The requirements given in Eqs. (3.4) and (3.5) impose certain linear relations on
the {αij} and {βij} which must be satisfied.

It turns out that the relation (3.5) always holds:

Proposition 3.3. Let φ ∈ S2(Γ) and u ∈ Cλ(Γ\H), λ = −(1/4 + κ2). Then

〈4y2φ∂z̄u,Ea(·, 1/2 + iκ)〉 = 〈4y2φ̄∂zu,Ea(·, 1/2 + iκ)〉 = 0.

Proof: Without loss of generality assume a = i∞. Also choose s with Re(s) > 3.

Let
Φ(z) :=

∫ z

i∞
φ(w)dw

be an antiderivative of φ. Note that

(∆ + λ)(uΦ) = −4y2φ∂z̄u.

Unfolding the integral,

−4〈y2φ∂z̄u,Ea(·, s̄)〉 = 〈(∆ + λ)(uΦ), Ea(·, s̄)〉

=
∫ ∞

0

∫ 1

0

(∆ + λ)(u(z)Φ(z))ys dxdy

y2

12



Integrate by parts twice. The fact that the real part of s is sufficiently large ensures
that the boundary terms vanish, leaving us with

−4〈y2φ∂z̄u,Ea(·, s̄)〉 =
∫ ∞

0

∫ 1

0

u(z)Φ(z)(∆ + λ)ys dxdy

y2
.

The proof is completed by analytically continuing to s = 1/2 + iκ, and using the
fact that

(∆ + λ)y1/2+iκ = 0.

Conversely, given complex constants {αij} and {βij} satisfying (3.4), we can
construct a function f ∈ C2

λ(Γ\H)/Cλ(Γ\H). We first set H := (∆ + λ)f0, where
f0(z) is the function associated to {αij}, {βij} by Eq. (3.1). Thanks to the relation
(3.4), there exists a function G ∈ L(Γ\H) such that H := (∆ + λ)G. This function
is well-defined modulo Cλ(Γ\H). It follows that

f := f0 −G

is an element of C2
λ(Γ\H). Furthermore, any two functions f ∈ C2

λ(Γ\H) associated
to the complex constants {αij} and {βij} as above must differ by a Maass form in
Cλ(Γ\H).

It is easy to see that the mappings defined in this way are linear and inverse to
one another.

Let M = 2 dim(S2(Γ)) dim(Cλ(Γ\H)). We have shown

Theorem 3.4. As an R-vector space,

C2
λ(Γ\H)/Cλ(Γ\H)

is isomorphic to

{(αij , βij) ∈ CM : 〈H(·;λ, {αij}, {βij}), η〉 = 0, for all η ∈ Cλ(Γ\H)}.

In particular, dim C2
λ(Γ\H) ≤ (2 dim S2(Γ) + 1) dim(Cλ(Γ\H)). It would be desir-

able to also find a strong lower bound for dim C2
λ(Γ\H).

4. Hecke operators

Using the above description of the structure of M̃2
k (Γ, v), we can define operators

on it that are compatible with the usual Hecke operators on M̃k(Γ, v). We restrict
13



ourselves to the case Γ = Γ0(N), the Hecke congruence group of level N (where we
have identified ±1). The character v is induced by a character on (Z/NZ)∗. In the
following we will just indicate the level N instead of writing the full group Γ0(N).

According to Section 2, any f in M̃2
k (N, v) can be uniquely written in the form

f(z) =
2g∑

i=0

hi(z)Λi(z)

for unique hi in M̃k(N, v). We then naturally define

(Tnf)(z) :=
2g∑

i=0

(Tnhi)(z)Λi(z) (4.1)

where the Tn is the usual Hecke operator on M̃k(N, v) given by the formula

Tng := nk−1
∑

ad=n

∑

b (mod d)

v(d)d−kg(
az + b

d
).

Obviously the maps given by (4.1) map M̃2
k (N, v) to M̃2

k (N, v) and coincide with
the usual Hecke operators on M̃k(N, v) ⊂ M2

k (N, v).
It is possible to define other Hecke operators on these second-order spaces. For

examples of such alternative operators in the special case of Eisenstein series formed
with modular symbols and related functions, see [DO].

There is nothing special about the Λi functions used in the definition (4.1). If
L′i with 1 ≤ i ≤ 2g is any basis for Hom0(Γ,C) then there exist Λ′i functions as in
(2.2) such that L′i(γ) = Λ′i(γz)− Λ′i(z) for all γ in Γ. Also set Λ′0 = Λ0 = 1.

Proposition 4.1. For f =
∑2g

i=0 hiΛi =
∑2g

j=0 h′jΛ
′
j we have

2g∑

i=0

(Tnhi)Λi =
2g∑

j=0

(Tnh′j)Λ
′
j .

Proof: We express the linear dependence of Λ′j and Λi by writing

Λ′j =
∑

i

αijΛi.

Thus

f =
2g∑

i=0

hiΛi =
2g∑

j=0

h′jΛ
′
j =

2g∑

i,j=0

αijh
′
jΛi

14



so that hi −
∑

j αijh
′
j = 0. Now

∑

i

(Tnhi)Λi −
∑

j

(Tnh′j)Λ
′
j =

∑

i

(Tnhi)Λi −
∑

i,j

(Tnh′j)αijΛi

=
∑

i

(
(Tnhi)−

∑

j

αij(Tnh′j)
)
Λi

=
∑

i

(
Tn(hi −

∑

j

αijh
′
j)

)
Λi = 0

as required, completing the proof.

It is obvious that these Hecke operators Tn ((n,N) = 1) inherit the multiplica-
tivity properties of the usual Hecke operators. Furthermore, it is possible to give a
simple characterization of the effect of Tp’s (p prime not dividing N) on the Fourier
coefficients of a holomorphic f ∈ S̃2

k(N, v). Specifically, suppose that

f(z) =
∑

j

fj(z)
∫ z

i∞
gj(z)

for some fj ∈ Sk(N, v), gj ∈ S2(N). If

fj(z) =
∞∑

m=1

aj(m)e2πimz

gj(z) =
∞∑

m=1

cj(m)e2πimz

then

f(z) =
1

2πi

∑
m

(∑
n

∑
j aj(m− n)cj(n)

n

)
e2πimz.

Therefore, for every prime p such that (p,N) = 1,

Tpf(z) =
1

2πi

∑
m

( ∑
n

∑
j ãj(m− n)cj(n)

n

)
e2πimz

where ãj(l) = aj(pl) + pk−1aj(l/p) (with aj(α) := 0 if α 6∈ Z) is the l-th Fourier
coefficient of Tpfj(z).

This implies, in particular, that if f is an eigenfunction of Tp with eigenvalue λp,

then ∑

j

aj(p)cj(1) = λp

∑

j

aj(1)cj(1).

It should finally be noted that in a similar manner we could construct operators
induced by the Atkin-Lehner operators Uq (q|N) for which an analogous discussion
applies.
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