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Abstract

The generating function for pN(n), the number of partitions of n into at most N parts, may be written
as a product of N factors. In part I, [O’S], we studied the behavior of coefficients in the partial fraction
decomposition of this product as N → ∞ by applying the saddle-point method to get the asymptotics of
the main terms. In this second part we bound the error terms. This involves estimating products of sines
and further saddle-point arguments. The saddle-points needed are associated to zeros of the analytically
continued dilogarithm.

1 Introduction

The generating function for pN (n), the number of partitions of n into at most N parts, and its partial fraction
decomposition may be written as

∞∑

n=0

pN (n)qn =

N∏

j=1

1

1 − qj
=

∑

06h<k6N
(h,k)=1

⌊N/k⌋
∑

ℓ=1

Chkℓ(N)

(q − e2πih/k)ℓ
(1.1)

for coefficients Chkℓ(N) ∈ Q(e2πih/k) by [O’S12, Prop. 3.3]. Let w0 ≈ 0.916198− 0.182459i be the solution to

Li2(w) − 2πi log(w) = 0 (1.2)

where Li2 denotes the dilogarithm, and set z0 := 1 + log(1 − w0)/(2πi) ≈ 1.18147 + 0.255528i. With

FN :=
{

h/k : 1 6 k 6 N, 0 6 h < k, (h, k) = 1
}

denoting the Farey fractions of order N in [0, 1), we claimed the asymptotic result

∑

h/k∈F100

Chk1(N) = Re

[

(−2z0e
−πiz0)

w−N
0

N2

]

+ O

( |w0|−N

N3

)

(1.3)

in [O’S, Thm. 1.2]. This resolves an old conjecture of Rademacher in [Rad73, p. 302] by showing that the
limit of Chkℓ(N) as N → ∞ does not exist in general since |1/w0| > 1, see [O’S, Cor. 1.3].

Equation (1.3) is a special case of the more general theorem, [O’S, Thm. 1.4], which we state next.
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Theorem 1.1. There are explicit coefficients cℓ,0, cℓ,1, . . . so that

C01ℓ(N) +
∑

0<h/k∈F100

ℓ∑

j=1

(e2πih/k − 1)ℓ−jChkj(N)

= Re

[

w−N
0

N ℓ+1

(

cℓ,0 +
cℓ,1

N
+ · · · + cℓ,m−1

Nm−1

)
]

+ O

( |w0|−N

N ℓ+m+1

)

(1.4)

where cℓ,0 = −2z0e
−πiz0(2πiz0)

ℓ−1 and the implied constant depends only on ℓ and m.

We introduce some notation and results from [O’S, Sect. 1.3] to describe the proof. Define the numbers

Qhkσ(N) := 2πi Res
z=h/k

e2πiσz

(1 − e2πiz)(1 − e2πi2z) · · · (1 − e2πiNz)
. (1.5)

The Rademacher coefficients Chkℓ(N) are related to them by

Chkℓ(N) =
ℓ∑

σ=1

(
ℓ − 1

σ − 1

)

(−e2πih/k)ℓ−σQhkσ(N) (1.6)

and for σ a positive integer they satisfy

∑

h/k∈FN

Qhkσ(N) = 0 (1.7)

for N(N + 1)/2 > σ. Put

A(N) :=
{

h/k : N/2 < k 6 N, h = 1 or h = k − 1
}

⊆ FN (1.8)

and decompose (1.7) into

∑

h/k∈F100

Qhkσ(N) +
∑

h/k∈FN−(F100∪A(N))

Qhkσ(N) +
∑

h/k∈A(N)

Qhkσ(N) = 0. (1.9)

Theorem 1.1 breaks into two natural parts. The first is proved in [O’S]:

Theorem 1.2. With b0 = 2z0e
−πiz0 and explicit b1(σ), b2(σ), . . . depending on σ ∈ R we have

∑

h/k∈A(N)

Qhkσ(N) = Re

[

w−N
0

N2

(

b0 +
b1(σ)

N
+ · · · + bm−1(σ)

Nm−1

)]

+ O

( |w0|−N

Nm+2

)

for an implied constant depending only on σ and m.

The proof of the second part is only sketched in [O’S]:

Theorem 1.3. There exists W < U := − log |w0| ≈ 0.068076 so that

∑

h/k∈FN−(F100∪A(N))

Qhkσ(N) = O
(
eWN

)

for an implied constant depending only on σ. We may take W = 0.055.

Theorem 1.1 follows from combining Theorems 1.2 and 1.3 with (1.9) and (1.6). This is done in [O’S, Sect.
5.4].
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1.1 Main Results

In this paper we give the details of the proof of Theorem 1.3. This therefore completes the proof of Theorem
1.1 and (1.3). The work in this paper and [O’S] will also be useful in describing the asymptotics of Sylvester
waves and restricted partitions; this corresponds to σ < 0 as discussed in [O’S, Sect. 6.2]. Some natural
extensions and possible generalizations of our results are given there as well.

Define the sine product

∏

m(θ) :=

m∏

j=1

2 sin(πjθ) (1.10)

with
∏

0(θ) := 1. In Section 3 we show

Proposition 1.4. For 1 6 k 6 N , σ ∈ R and s := ⌊N/k⌋

|Qhkσ(N)| 6
3

k3
exp

(

N
2 + log (1 + 3k/4)

k
+

|σ|
N

) ∣
∣
∣
∏−1

N−sk(h/k)
∣
∣
∣ .

In Section 2 we find sharp general bounds for
∏−1

m (h/k). This requires the interesting sum

S(m; h, k) :=
∑

(β,γ)∈Z(h,k)

sin(2πmγ/k)

βγ
(1.11)

for
Z(h, k) :=

{

(β, γ) ∈ Z × Z : 1 6 |β| < k, 1 6 γ < k, βh ≡ γ mod k
}

. (1.12)

Combining a refinement of Proposition 1.4 with our bound for
∏−1

m (h/k) allows us to prove Theorem
1.3 except for h/k in the following sets

C(N) :=
{

h/k :
N

2
< k 6 N, k odd, h = 2 or h = k − 2

}

, (1.13)

D(N) :=
{

h/k :
N

2
< k 6 N, k odd, h =

k − 1

2
or h =

k + 1

2

}

, (1.14)

E(N) :=
{

h/k :
N

3
< k 6

N

2
, h = 1 or h = k − 1

}

. (1.15)

For the next results we need a brief description of the zeros of the dilogarithm; see [O’S, Sect. 2.3] for a
fuller discussion. Initially defined as

Li2(z) :=

∞∑

n=1

zn

n2
for |z| 6 1, (1.16)

the dilogarithm has an analytic continuation given by −
∫

C(z)
log(1 − u)du

u where the contour of integration

C(z) is a path from 0 to z ∈ C. This makes the dilogarithm a multi-valued holomorphic function with
branch points at 0 and 1. See for example [Max03], [Zag07]. We let Li2(z) denote the dilogarithm on its
principal branch so that Li2(z) is a single-valued holomorphic function on C − [1,∞). It can be shown that
the value of the analytically continued dilogarithm is always given by

Li2(z) + 4π2A + 2πiB log (z) (1.17)

for some A, B ∈ Z.
Let w(A, B) be a zero of (1.17). It turns out that for B 6= 0, a zero w(A, B) exists if and only if −|B|/2 <

A 6 |B|/2 and is unique in this case. We already met w0 = w(0,−1) and we also need the two further zeros
w(1,−3) ≈ −0.459473− 0.848535i, w(0,−2) ≈ 0.968482− 0.109531i and the associated saddle-points

z3 := 3 + log
(
1 − w(1,−3)

)
/(2πi), z1 := 2 + log

(
1 − w(0,−2)

)
/(2πi).

Theorem 1.5. With c∗0 = −z3e
−πiz3/4 and explicit c∗1(σ), c∗2(σ), . . . depending on σ ∈ R we have

∑

h/k∈C(N)

Qhkσ(N) = Re

[
w(1,−3)−N

N2

(

c∗0 +
c∗1(σ)

N
+ · · · + c∗m−1(σ)

Nm−1

)]

+ O

( |w(1,−3)|−N

Nm+2

)

(1.18)

for an implied constant depending only on σ and m.
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Theorem 1.6. Let N denote N mod 2. With

d0

(
N
)

= z0

√

2e−πiz0

(
e−πiz0 + (−1)N

)
(1.19)

and explicit d1

(
σ, N

)
, d2

(
σ, N

)
, . . . depending on σ ∈ R and N , we have

∑

h/k∈D(N)

Qhkσ(N) = Re

[

w
−N/2
0

N2

(

d0

(
N
)

+
d1

(
σ, N

)

N
+ · · · + dm−1

(
σ, N

)

Nm−1

)]

+ O

( |w0|−N/2

Nm+2

)

(1.20)

for an implied constant depending only on σ and m.

(By w
−N/2
0 we mean

(√
w0

)−N
where

√
w0 is chosen as usual with Re(

√
w0) > 0.)

Theorem 1.7. With e0 = −3z1e
−πiz1/2 and explicit e1(σ), e2(σ), . . . depending on σ ∈ R we have

∑

h/k∈E(N)

Qhkσ(N) = Re

[
w(0,−2)−N

N2

(

e0 +
e1(σ)

N
+ · · · + em−1(σ)

Nm−1

)]

+ O

( |w(0,−2)|−N

Nm+2

)

(1.21)

for an implied constant depending only on σ and m.

The above three estimates are the final elements required for Theorem 1.3, and its proof is given near
the end of Section 8. Theorems 1.5, 1.6 and 1.7 above are proved using the techniques developed in [O’S]
for Theorem 1.2, though they each present new challenges. These techniques use the saddle-point method
described in the next subsection.

In fact, Theorems 1.5, 1.6 and 1.7 are more than is needed for Theorem 1.3, but their asymptotic expan-
sions point the way to further results and a better understanding of relations in the left side of the identity
(1.7). Examples of these relations, from [O’S, Sect. 6.2], are

Q011(N) ∼ −
∑

h/k∈A(N)

Qhk1(N), (1.22)

Q121(N) ∼ −
∑

h/k∈D(N)

Qhk1(N) (1.23)

where by (1.22) and (1.23) (and (1.24)) we mean that, at least numerically, the asymptotic expansions of both
sides seem to be identical. With Theorems 1.5 and 1.7 we discover another asymptotic relation. To describe
it, let C′(N) be all h/k ∈ C(N) with 2N/3 < k 6 N , so that C′(N) is about half of C(N) . Then

3
∑

h/k∈C′(N)

Qhkσ(N) ∼
∑

h/k∈E(N)

Qhkσ(N). (1.24)

See the end of Section 8 for more about (1.24).

1.2 The saddle-point method

The next result was used in [O’S, Sect. 5.1] and is a simpler version of [Olv74, Theorem 7.1, p. 127].

Theorem 1.8 (Saddle-point method). Let P be a finite polygonal path in C with p(z), q(z) holomorphic functions
in a neighborhood of P . Assume p, q and P are independent of a parameter N > 0. Suppose p′(z) has a simple zero at
a non-corner point z0 ∈ P with Re(p(z) − p(z0)) > 0 for z ∈ P except at z = z0. Then there exist explicit numbers
a2s depending on p, q, z0 and P so that we have

∫

P
e−N ·p(z)q(z) dz = 2e−N ·p(z0)

(
S−1∑

s=0

Γ(s + 1/2)
a2s

Ns+1/2
+ O

(
1

NS+1/2

))

(1.25)

for S an arbitrary positive integer and an implied constant independent of N .
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Write the power series for p and q near z0 as

p(z) = p(z0) + p0(z − z0)
2 + p1(z − z0)

3 + · · · , (1.26)

q(z) = q0 + q1(z − z0) + q2(z − z0)
2 + · · · . (1.27)

Choose ω ∈ C giving the direction of the path P through z0: near z0, P looks like z = z0 + ωt for small t ∈ R
increasing. Wojdylo in [Woj06, Theorem 1.1] found an explicit formula for the numbers a2s:

a2s =
ω

2(ω2p0)1/2

2s∑

i=0

q2s−i

i∑

j=0

p−s−j
0

(−s − 1/2

j

)

B̂i,j(p1, p2, . . . ) (1.28)

where we must choose the square root (ω2p0)
1/2 in (1.28) so that Re

(
(ω2p0)

1/2
)

> 0 and B̂i,j is the partial
ordinary Bell polynomial. The first cases are

a0 =
ω

2(ω2p0)1/2
q0, a2 =

ω

2(ω2p0)1/2

(
q2

p0
− 3

2

p1q1 + p2q0

p2
0

+
15

8

p2
1q0

p3
0

)

, (1.29)

agreeing with [Olv74, p. 127].
We will be applying Theorem 1.8 to functions p of the form

pd(z) :=
−Li2

(
e2πiz

)
+ Li2(1) + 4π2d

2πiz
. (1.30)

Recall that Li2(z) is holomorphic on C − [1,∞). Hence pd(z) is a single-valued holomorphic function away
from the vertical branch cuts (−i∞, n] for n ∈ Z. (We use (−i∞, n] to indicate all points in C with real part
n and imaginary part at most 0.) The next result is shown in [O’S, Sect. 2.3].

Theorem 1.9. Fix integers m and d with −|m|/2 < d 6 |m|/2. Then there is a unique solution to p′d(z) = 0 for
z ∈ C with m − 1/2 < Re(z) < m + 1/2 and z 6∈ (−i∞, m]. Denoting this saddle-point by z∗, it is given by

z∗ = m +
log
(
1 − w(d,−m)

)

2πi
(1.31)

and satisfies
pd(z

∗) = log
(
w(d,−m)

)
. (1.32)

2 The maxima and minima of
∏

m(h/k)

Recall the set Z(h, k) from (1.12). We will also need Clausen’s integral,

Cl2(θ) := −
∫ θ

0

log |2 sin(x/2)| dx (θ ∈ R). (2.1)

The maximum value of Cl2(θ) is Cl2(π/3) ≈ 1.0149416.

Theorem 2.1. For all m, h, k ∈ Z with 1 6 h < k, (h, k) = 1 and 0 6 m < k we have

1

k
log
∣
∣
∣
∏−1

m (h/k)
∣
∣
∣ =

Cl2(2πmγ0h/k)

2π|β0γ0|
+ O

(
log k√

k

)

(2.2)

where (β0, γ0) is a pair in Z(h, k) with |β0γ0| minimal. The implied constant in (2.2) is absolute.

We prove Theorem 2.1 in the following subsections, assuming throughout that m, h, k satisfy its assump-
tions. Define D(h, k) to be the above minimal value |β0γ0|. For example, it is easy to see that

D(h, k) = 1 ⇐⇒ h ≡ ±1 mod k (2.3)

and if D(h, k) 6= 1 then
D(h, k) = 2 ⇐⇒ h or h−1 ≡ ±2 mod k (2.4)
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with k necessarily odd. Since (1, h) ∈ Z(h, k) we have D(h, k) 6 h < k. We will see later in Lemma 2.8 that

there is a unique (β0, γ0) ∈ Z(h, k) with |β0γ0| minimal if |β0γ0| <
√

k/2.
The corollary we will need, Corollary 2.10, says there exists an absolute constant τ such that

1

k

∣
∣
∣log

∣
∣
∏

m(h/k)
∣
∣

∣
∣
∣ 6

Cl2(π/3)

2πD(h, k)
+ τ

log k√
k

. (2.5)

For example, Figure 1 compares both sides of (2.5) with k = 101, τ = 0 and

Ψ(h/k) := max
06m<k

{
1

k

∣
∣
∣log

∣
∣
∏

m(h/k)
∣
∣

∣
∣
∣

}

. (2.6)
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Figure 1: Bounding Ψ(h/k) for 1 6 h 6 k − 1 and k = 101

2.1 Relating
∏

−1

m
(h/k) to S(m; h, k)

By (2.1) we have

log
∣
∣
∣
∏−1

m (h/k)
∣
∣
∣ =

m∑

j=1

Cl′2(2πjh/k). (2.7)

With the sum S(m; h, k) defined in (1.11), our first goal is to prove:

Proposition 2.2. For 1 6 m < k and an absolute implied constant

m∑

j=1

Cl′2(2πjh/k) =
k

2π
S(m; h, k) + O

(
log2 k

)
.

Let

fL(x) =

L∑

n=1

cos(nx)

n
(2.8)

and define ‖x‖ as the distance from x ∈ R to the nearest integer, so that 0 6 ‖x‖ 6 1/2.

Lemma 2.3. For L > 1 and x ∈ R, x 6∈ Z we have

Cl′2(2πx) = fL(2πx) + O

(
1

L ‖x‖

)

.

Proof. Let Am(2πx) :=
∑m

r=1 e2πirx. Then this geometric series evaluates to

Am(2πx) = − i

2

e2πi(m+1/2)x − eπix

sin πx
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and the inequality | sin πx| > 2 ‖x‖ implies |Am(2πx)| 6 1/(2 ‖x‖). By partial summation

M∑

r=L+1

e2πirx

r
=

AM

M
− AL

L
+

M−1∑

d=L

Ad

d(d + 1)
.

Taking real parts, using the bound for Ad and evaluating the telescoping sum shows that

∣
∣
∣
∣
∣

M∑

r=L+1

cos(2πrx)

r

∣
∣
∣
∣
∣
6

1

L ‖x‖

for x 6∈ Z. It follows that
∑∞

r=1 cos(2πrx)/r converges to Cl′2(2πx) for these x and we obtain the lemma.

Corollary 2.4. We have
m∑

j=1

Cl′2(2πjh/k) =
m∑

j=1

fk(2πjh/k) + O (log k) .

Proof. Use
m∑

j=1

1

‖jh/k‖ 6

k−1∑

j=1

1

‖jh/k‖ = 2

k/2
∑

j=1

1

‖j/k‖ = 2

k/2
∑

j=1

k

j
.

With
∑k

j=1 1/j 6 1 + log k we get
m∑

j=1

1

k ‖jh/k‖ ≪ log k

and the corollary now follows from Lemma 2.3.

We next apply Euler-Maclaurin summation, in the form of [IK04, Corollary 4.3], to find

m∑

j=1

fk(2πjh/k) =

L∑

l=−L

∫ m

0

fk(2πxh/k)e2πilx dx

+
1

2
fk(2πmh/k) − 1

2
fk(0) + O

(∫ m

0

|f ′
k(2πxh/k)2πh/k|

1 + L ‖x‖ dx

)

(2.9)

where the implied constant is absolute. Clearly we see |fk(x)| 6 1 + log k and |f ′
k(x)| 6 k. To bound the

error term in (2.9) note that

∫ m

0

dx

1 + L ‖x‖ <

∫ k−1

0

dx

1 + L ‖x‖ = 2k

∫ 1/2

0

dx

1 + Lx
=

2k(1 + log L/2)

L
.

Hence, on choosing L = k2, (2.9) implies

m∑

j=1

fk(2πjh/k) =
L∑

l=−L

∫ m

0

fk(2πxh/k)e2πilx dx + O(log k). (2.10)

Use the definition of f to evaluate the integrals in (2.10). By rearranging and combining with Corollary 2.4
we have now shown

Lemma 2.5. For 1 6 m < k and L = k2,

m∑

j=1

Cl′2(2πjh/k) =
k

2π

L∑

l=−L

k−1∑

n=1

sin(2πm(nh + lk)/k)

n(nh + lk)
+ O (log k) . (2.11)
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To simplify the right of (2.11) set

H(d) = H(d, L; h, k) := #
{

(l, n) : nh + lk = d, 1 6 n 6 k − 1,−L 6 l 6 L
}

.

Then the double sum equals
∑

d∈Z

H(d)
sin(2πmd/k)

(dh−1 mod k)d
(2.12)

where we exclude ds that are multiples of k, since H(d) is necessarily 0 if k|d, and we understand here and
throughout that 0 6 (∗ mod k) 6 k − 1.

Lemma 2.6. Recall that L = k2. For all d ∈ Z we have H(d) = H(d, L; h, k) equalling 0 or 1. Also

H(d) = 1 for 1 6 |d| < k, (2.13)

H(d) = 0 for |d| > 2k3. (2.14)

Proof. Since (h, k) = 1 there exist n0, l0 such that n0h + l0k = 1. Then for all t ∈ Z

(n0 + tk)h + (l0 − th) = 1

and we may choose n0, l0 satisfying 1 6 n0 < k and −h < l0 6 −1. Similarly, for fixed h, k, d, all solutions
(n, l) of nh + lk = d are given by

n = dn0 + tk, l = dl0 − th (t ∈ Z). (2.15)

Hence, for k ∤ d, there is exactly one solution (n, l) with 1 6 n 6 k − 1. Then H(d) = 1 if the corresponding l
satisfies −L 6 l 6 L and H(d) = 0 otherwise.

In (2.15), if 1 6 n 6 k − 1 then t = −⌊dn0/k⌋. Therefore

l = dl0 − th = dl0 + h⌊dn0/k⌋
and l satisfies −k2 < l < k2 for |d| < k. This proves (2.13). Finally, to show (2.14), note that |n| < k, |l| 6 L
implies |nh + lk| < k(h + L) < 2k3.

The sum (2.12) with indices d restricted to |d| < k is

∑

−k<d<k, d 6=0

sin(2πmd/k)

(dh−1 mod k)d
. (2.16)

Replacing d by dh if d > 0, and d by −(dh mod k) ≡ (−dh) mod k if d < 0, allows us to write (2.16) as

∑

−k<d<k, d 6=0

sin(2πmdh/k)

(dh mod k)|d| = S(m; h, k).

Proof of Proposition 2.2. With Lemmas 2.5 and 2.6 we have demonstrated that

m∑

j=1

Cl′2(2πjh/k) =
k

2π
S(m; h, k) +

k

2π

∑

d∈Z : k<|d|<2k3

H(d)
sin(2πmd/k)

(dh−1 mod k)d
+ O (log k) . (2.17)

To estimate the sum on the right of (2.17), write d = mk + r and use (2.14) to see that it is bounded by

∑

−2k26m62k2

m 6=0,−1

k−1∑

r=1

1

|mk + r|(rh−1 mod k)
. (2.18)

For m > 1 the inner sum is less than

k−1∑

r=1

1

mk(rh−1 mod k)
=

1

mk

k−1∑

r=1

1

r
<

1 + log k

mk
.

Similarly for m 6 −2 and therefore (2.18) is bounded by

2
1 + log k

k

2k2

∑

m=1

1

m
≪ log2 k

k
.
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2.2 Relating S(m; h, k) to Clausen’s integral

With (2.7) and Proposition 2.2 we have proved that

1

k
log
∣
∣
∣
∏−1

m (h/k)
∣
∣
∣ =

S(m; h, k)

2π
+ O

(
log2 k

k

)

. (2.19)

For the proof of Theorem 2.1 we therefore need to estimate S(m; h, k). To do this, note that the largest terms
in the sum (1.11) should occur when |β| and γ are both small. We introduce a parameter R to the set Z(h, k)
to control the size of the elements:

ZR(h, k) :=
{

(β, γ) ∈ Z × Z : 1 6 |β| < R, 1 6 γ < R, βh ≡ γ mod k
}

. (2.20)

Then Z(h, k) is Zk(h, k) in this notation.

Lemma 2.7. For an absolute implied constant

∑

(β,γ)∈Zk(h,k)−ZR(h,k)

sin(2πmγ/k)

βγ
= O

(
log R

R

)

. (2.21)

Proof. We may partition the terms of the sum on the left of (2.21) into the three cases where |β| > R or γ > R
or both. The first two corresponding sums are each bounded by 2(1 + log R)/R. With the Cauchy-Schwarz
inequality, the third is bounded by

2





k−1∑

β=R

1

β2





1/2



k−1∑

γ=R

1

γ2





1/2

< 2

( ∞∑

d=R

1

d2

)

<
2

R

(

1 +
1

R

)

.

Lemma 2.8. Suppose ZR(h, k) is non-empty and k > 2R2. Let (β1, γ1) be a pair in ZR(h, k) with |β1γ1| minimal.
Then for each (β, γ) ∈ ZR(h, k) there exists a positive integer λ such that (β, γ) = (λβ1, λγ1).

Proof. The number β may not have an inverse mod k so write β = β′k′ with k′|k and gcd(β′, k) = 1.
Necessarily we also have γ = γ′k′ with gcd(γ′, k) = 1. Similarly, there exists k1|k so that

β1 = β′
1k1, γ1 = γ′

1k1, gcd(β′
1, k) = gcd(γ′

1, k) = 1.

Then
h ≡ (β′)−1γ′ mod k/k′, h ≡ (β′

1)
−1γ′

1 mod k/k0

and letting k∗ = gcd(k/k′, k/k1) we obtain

(β′)−1γ′ ≡ (β′
1)

−1γ′
1 mod k∗

so that
β′

1γ
′ − β′γ′

1 ≡ 0 mod k∗. (2.22)

Now

|β′
1γ

′ − β′γ′
1| <

2R2

k1k′ 6
k

k1k′ 6 k∗ (2.23)

so that (2.22) and (2.23) imply
β′

1γ
′ − β′γ′

1 = 0

which, in turn, shows that β/β1 = γ/γ1. Hence (β, γ) = (µβ1, µγ1) for µ := γ/γ1 ∈ Q>0. Write µ = λ + δ
with λ ∈ Z and 0 6 δ < 1. If 0 < δ < 1 then

(β, γ) − λ(β1, γ1) = (β − λβ1, γ − λγ1) = (δβ1, δγ1) ∈ Zk(h, k),

but |δ2β1γ1| < |β1γ1| and |β1γ1| was supposed to be minimal. We must have δ = 0, as required.

Proposition 2.9. Let (β0, γ0) be a pair in Zk(h, k) with |β0γ0| minimal, and so equalling D(h, k). Then for an
absolute implied constant

S(m; h, k) =
Cl2(2πmγ0/k)

|β0γ0|
+ O

(
log k√

k

)

. (2.24)
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Proof. By Lemma 2.7 with R =
√

k/2

S(m; h, k) =
∑

(β,γ)∈Z√
k/2

(h,k)

sin(2πmγ/k)

βγ
+ O

(
log k√

k

)

. (2.25)

Assume first that Z√
k/2

(h, k) is empty. If (β0, γ0) /∈ Z√
k/2

(h, k) it follows that |β0γ0| >
√

k/2 and so

Cl2(2πmγ0/k)

|β0γ0|
= O

(
1√
k

)

. (2.26)

Then (2.24) follows from (2.25) and (2.26).
Assume now that Z√

k/2
(h, k) is not empty. Apply Lemma 2.8 with the same R =

√

k/2, and (β1, γ1) ∈
Z√

k/2
(h, k) with |β1γ1| minimal, to get

∑

(β,γ)∈Z√
k/2

(h,k)

sin(2πmγ/k)

βγ
=

1

|β1γ1|
∑

16λ<
√

k/2/ max{|β1|,γ1}

sin(2πmλγ1/k)

λ2

=
Cl2(2πmγ1/k)

|β1γ1|
+ O






1

|β1γ1|
∑

λ>
√

k/2/ max{|β1|,γ1}

1

λ2






=
Cl2(2πmγ1/k)

|β1γ1|
+ O

(
1√
k

)

. (2.27)

If (β0, γ0) ∈ Z√
k/2

(h, k) then necessarily (β0, γ0) = (β1, γ1) and so (2.25) and (2.27) prove the proposition in

this case.
In the final case, Z√

k/2
(h, k) is not empty and doesn’t contain (β0, γ0). Since |β1γ1| > |β0γ0| >

√

k/2 we

find
Cl2(2πmγ1/k)

|β1γ1|
= O

(
1√
k

)

(2.28)

so that (2.24) follows from (2.25), (2.26), (2.27) and (2.28).

Proof of Theorem 2.1. The proof now follows directly from combining (2.19) and Proposition 2.9.

Corollary 2.10. There exists an absolute constant τ such that for all integers m with 0 6 m 6 k − 1

1

k

∣
∣
∣log

∣
∣
∏

m(h/k)
∣
∣

∣
∣
∣ 6

Cl2(π/3)

2πD(h, k)
+ τ

log k√
k

.

Proof. We may take τ to be the absolute implied constant of Theorem 2.1 and note that |Cl2(θ)| 6 Cl2(π/3)
for all θ ∈ R.

Numerically, it looks as if the implied constant in Theorem 2.1 may be taken to be 1/3, for example.
Hence τ in Corollary 2.10 could be 1/3, but in fact it seems that τ = 0 would probably do. See Figure 1.

3 Bounds for most Qhkσ(N)

3.1 Initial estimates

In this subsection we prove the next result, mentioned in the introduction.

Proposition 1.4. For 1 6 k 6 N , σ ∈ R and s := ⌊N/k⌋

|Qhkσ(N)| 6
3

k3
exp

(

N
2 + log (1 + 3k/4)

k
+

|σ|
N

) ∣
∣
∣
∏−1

N−sk(h/k)
∣
∣
∣ . (3.1)
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Proof. From definition (1.5),

Qhkσ(N) =

∫

L

e2πiσz

(1 − e2πiz)(1 − e2πi2z) · · · (1 − e2πiNz)
dz (3.2)

where z traces a loop L of radius 1/(2πNkλ) around h/k, i.e.

z = h/k + w, |w| =
1

2πNkλ

and λ is large enough that only the pole of the integrand at h/k is inside L. This is ensured when λ > 1/2π,
since if a/b is any other pole (1 6 b 6 N ) we have

∣
∣
∣
∣

a

b
− h

k

∣
∣
∣
∣
=

∣
∣
∣
∣

ak − bh

bk

∣
∣
∣
∣
>

1

bk
>

1

Nk
> |w|.

Therefore, letting e2πiσzIN (z) denote the integrand in (3.2),

|Qhkσ(N)| 6

∫

L

∣
∣e2πiσzIN (z)

∣
∣ dz 6 2π

(
1

2πNkλ

)

sup
{
|e2πiσzIN (z)| : z ∈ L

}
. (3.3)

It is easy to see that if λ > 1/k then

|e2πiσz | 6 e|σ|/N (z ∈ L, σ ∈ R). (3.4)

Now write IN (z) = I∗N (z) · I∗∗N (z) for

I∗N (z) :=
∏

16j6N
k|j

1

(1 − e2πijz)
, I∗∗N (z) :=

∏

16j6N
k∤j

1

(1 − e2πijz)
.

We use the following simple bounds, (better ones are proved in Lemma 3.3). For all z ∈ C with |z| 6 1

|1 − ez| 6 2|z|, (3.5)

|1 − ez|−1
6 2/|z|, (3.6)

|log(1 − z/2)| 6 3|z|/4. (3.7)

Lemma 3.1. For z ∈ L and λ > 1/k we have

|I∗N (z)| 6
e√
2π

(
k

N

)1/2

(2ekλ)s. (3.8)

Proof. Clearly

I∗N (z) =
∏

16j6N
k|j

1

(1 − e2πij(h/k+w))
=

∏

16m6s

1

(1 − e2πikmw)
.

Also

|2πikmw| =
2πkm

2πNkλ
6

s

Nλ
6

1

kλ
, (3.9)

so assuming λ > 1/k, we can apply (3.6) to get

|I∗N (z)| 6
∏

16m6s

2

2πkm|w| =
∏

16m6s

2Nλ

m
=

(2Nλ)s

s!
.

It follows from Stirling’s formula that 1/a! < 1√
2πa

(
e
a

)a
for a ∈ Z>1. Hence the lemma is obtained with

1

s!
=

s + 1

(s + 1)!
<

s + 1
√

2π(s + 1)

(
e

s + 1

)s+1

=
e

√

2π(s + 1)

(
e

s + 1

)s

<
e

√

2πN/k

(
ek

N

)s

.
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Lemma 3.2. For z ∈ L and λ > 1 we have

|I∗∗N (z)| 6 exp

(
N

2kλ
+

3N

8λ

)
1

ks

∣
∣
∣
∏−1

N−sk(h/k)
∣
∣
∣ .

Proof. If k = 1 then I∗∗N (z) = 1 and the lemma is true. So we may assume k > 2. Write

I∗∗N (z) =
∏

16j6N
k∤j

1

(1 − e2πij(h/k+w))

=
∏

16j6N
k∤j

e−2πijw
∏

16j6N
k∤j

1

(1 − e2πijh/k − 1 + e−2πijw)

= e−πiw(N(N+1)−ks(s+1))
∏

16j6N
k∤j

1

(1 − e2πijh/k)

∏

16j6N
k∤j

1

(1 − ηh/k(j, w))
(3.10)

for

ηh/k(j, w) :=
1 − e−2πijw

1 − e2πijh/k
.

To estimate the parts of (3.10), we start with

N(N + 1) − ks(s + 1) 6 N2, (k 6 N) (3.11)

to see that
∣
∣
∣e−πiw(N(N+1)−ks(s+1))

∣
∣
∣ 6 exp

(
N

2kλ

)

. (3.12)

With (1−ζ)(1−ζ2) · · · (1−ζk−1) = k for ζ a primitive kth root of unity, (by [O’S12, Lemma 4.4] for example),
the middle product satisfies

∏

16j6N
k∤j

1
∣
∣(1 − e2πijh/k)

∣
∣

=
1

ks

∣
∣
∣
∏−1

N−sk(h/k)
∣
∣
∣ . (3.13)

Next we estimate the right-hand product of (3.10). By (3.5)

∣
∣1 − e−2πijw

∣
∣ 6 2 · 2πj|w| =

2j

Nkλ
(3.14)

provided λ > 1/k. We have

1

|1 − e−2πiθ| =
1

2| sin(πθ)| 6
1

4|θ| (−1/2 6 θ 6 1/2)

and it follows that
1

∣
∣1 − e−2πijh/k

∣
∣

6
1

∣
∣1 − e−2πi/k

∣
∣

6
k

4
(k > 2). (3.15)

Consequently, (3.14), (3.15) show

|ηh/k(j, w)| 6
j

2Nλ
. (3.16)

If λ > 1 then |ηh/k(j, w)| 6 1/2 for all j 6 N and we may apply (3.7):

∏

16j6N
k∤j

1
∣
∣1 − ηh/k(j, w)

∣
∣

= exp



−
∑

16j6N, k∤j

log
∣
∣1 − ηh/k(j, w)

∣
∣





6 exp




∑

16j6N, k∤j

∣
∣log(1 − ηh/k(j, w))

∣
∣





6 exp




3

2

∑

16j6N, k∤j

∣
∣ηh/k(j, w)

∣
∣



 6 exp

(
3N

8λ

)

(3.17)
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where we used (3.11) in the last inequality. Combining the estimates (3.12), (3.13) and (3.17) for (3.10) finishes
the proof.

Inserting the bounds from (3.4) and Lemmas 3.1, 3.2 into (3.3), we obtain

|Qhkσ(N)| 6
e√

2πN3/2k1/2λ
exp

(

N

[
1

2kλ
+

3

8λ
+

1 + log 2λ

k

]

+
|σ|
N

) ∣
∣
∣
∏−1

N−sk(h/k)
∣
∣
∣ . (3.18)

For fixed k, the expression
1

2kλ
+

3

8λ
+

1 + log 2λ

k

has its minimum at λ = 1/2 + 3k/8. We may set λ to this value in (3.18) since all the conditions λ > 1/(2π),
1/k, 1 are satisfied when k > 1. This completes the proof of Proposition 1.4.

An example of Proposition 1.4 is given in Figure 2 for h = σ = 1 and N = 50 where we denote the
right side of (3.1) as Q∗

hkσ(N). The numbers Qhkσ(N) are calculated using the methods of [O’S12, Sect. 5] as
follows. For N , k > 1, m > 0 and 0 6 r 6 k − 1 define the rational numbers Ek(N, m; r) recursively with
Ek(0, m; r) set as 1 if m = r = 0 and 0 otherwise. Also

Ek(N, m; r) :=

m∑

a=0

Naka−1

a!

k−1∑

j=0

Ek

(
N − 1, m − a; (r − Nj) mod k

)
· Ba(j/k) (N > 1)

for Ba(x) the Bernoulli polynomial. Then

Qhkσ(N) =
(−1)N

N !

k−1∑

r=0

e2πi(r+σ)h/k
N−1∑

j=0

σj

j!
Ek(N, N − 1 − j; r). (3.19)

In particular, we see from (3.19) that e−2πiσh/kQhkσ(N) is a polynomial in σ of degree N − 1.
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b

b

k

log Q∗
1k1(50)

log |Q1k1(50)|

Figure 2: Bounding Qhkσ(50) for h = σ = 1 and 2 6 k 6 50

3.2 Improved estimates

By tightening up the bounds (3.5), (3.6), (3.7) and restricting the range of k we can improve Proposition 1.4
a little as follows.

Lemma 3.3. For z ∈ C and |z| 6 Y we have

∣
∣
∣
∣

1 − ez

z

∣
∣
∣
∣
6 α(Y ) :=

eY − 1

Y
(3.20)

∣
∣
∣
∣

z

1 − ez

∣
∣
∣
∣
6 β(Y ) := 2 +

Y

2

(

1 − cot

(
Y

2

))

(Y < 2π) (3.21)

∣
∣
∣
∣

log(1 − z)

z

∣
∣
∣
∣
6 γ(Y ) :=

1

Y
log

(
1

1 − Y

)

(Y < 1). (3.22)
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Proof. For |z| 6 Y < 2π we have

∣
∣
∣
∣

z

1 − ez

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∞∑

n=0

Bn
zn

n!

∣
∣
∣
∣
∣
6

∞∑

n=0

|Bn|
Y n

n!
= 1 +

Y

2
+

(

1 − Y

2
cot

(
Y

2

))

,

using [Rad73, Eq. (11.1)]. The other two inequalities have similar proofs. Note that for Y = 0 we have
α(0) = β(0) = γ(0) = 1 in the limit, with α(Y ), β(Y ) and γ(Y ) increasing for Y > 0.

Start with a parameter K > 1. We assume

k > K, λ > 1/2 + K/8. (3.23)

The quantity 1/(kλ) in (3.9) then satisfies

1

kλ
6

1

K(1/2 + K/8)
< 2π.

With (3.21) we may therefore replace the factor 2 in (3.8) by

ξ1 = ξ1(K) := β

(
1

K(1/2 + K/8)

)

. (3.24)

Similarly, the factor 2 in (3.14) may be replaced by

ξ2 = ξ2(K) := α

(
1

K(1/2 + K/8)

)

. (3.25)

This improves the bound (3.16) to

|αh/k(j, w)| 6
ξ2j

4Nλ

so that for all j 6 N we have |αh/k(j, w)| 6 ξ2/(4λ) < 1. The factor 3/2 in (3.17) can now be replaced by

ξ3 = ξ3(K) := γ

(
ξ2

4(1/2 + K/8)

)

(3.26)

and we obtain
∏

16j6N
k∤j

1
∣
∣1 − αh/k(j, w)

∣
∣

6 exp

(
ξ2ξ3N

8λ

)

.

Hence

|Qhkσ(N)| 6
e√

2πN3/2k1/2λ
exp

(

N

[
1

2kλ
+

ξ2ξ3

8λ
+

1 + log ξ1λ

k

]

+
|σ|
N

) ∣
∣
∣
∏−1

N−sk(h/k)
∣
∣
∣ (3.27)

and setting λ = 1/2 + ξ2ξ3k/8 minimizes (3.27). Note that ξ2ξ3 > 1 so that our initial inequality (3.23) for λ
is true. We have proved

Proposition 3.4. For 1 6 K 6 k 6 N and s := ⌊N/k⌋ we have

|Qhkσ(N)| 6
9

k3
exp

(

N
2 + log (ξ1/2 + ξ1ξ2ξ3k/8)

k
+

|σ|
N

) ∣
∣
∣
∏−1

N−sk(h/k)
∣
∣
∣ (3.28)

for ξ1, ξ2, ξ3 defined in (3.24), (3.25), (3.26) and depending on K .

Some examples of triples (K, ξ1, ξ1ξ2ξ3) are

K = 2 : ξ1 ≈ 1.37065, ξ1ξ2ξ3 ≈ 2.64070 (3.29)

K = 61 : ξ1 ≈ 1.00101, ξ1ξ2ξ3 ≈ 1.01778 (3.30)

K = 82 : ξ1 ≈ 1.00057, ξ1ξ2ξ3 ≈ 1.01297 (3.31)

K = 101 : ξ1 ≈ 1.00038, ξ1ξ2ξ3 ≈ 1.01041. (3.32)
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3.3 Final bounds

Define B(K, N) to be the set

{

h/k : K 6 k 6 N, 0 6 h < k, (h, k) = 1
}

(3.33a)

but with the restrictions

h 6≡ ±1 mod k if N/3 < k 6 N/2, (3.33b)

h 6≡ ±1,±2, (k ± 1)/2 mod k if N/2 < k 6 N. (3.33c)

Theorem 3.5. There exists W < U := − log |w0| ≈ 0.068076 so that

∑

h/k∈B(101,N)

Qhkσ(N) = O(eWN ).

We may take any W > Cl2(π/3)/(6π) ≈ 0.0538 and the implied constant depends only on σ and W .

Proof. Recall from Corollary 2.10 that there exists an absolute constant τ such that for all m, h, k ∈ Z with
1 6 h < k, (h, k) = 1 and 0 6 m < k we have

log
∣
∣
∣
∏−1

m (h/k)
∣
∣
∣ 6

Cl2(π/3)

2πD(h, k)
· k + τ

√
k log k. (3.34)

It follows from Proposition 3.4 and (3.34) that

Qhkσ(N) ≪ 1

k3
exp

(

N
2 + log (ξ1/2 + ξ1ξ2ξ3k/8)

k
+

Cl2(π/3)

2πD(h, k)
· k + τ

√
N log N

)

where k > K = 101 and ξ1, ξ1ξ2ξ3 are given in (3.32). Given any ǫ > 0 we have τ
√

N log N 6 ǫN for N large
enough. For k in a range 0 < a 6 k 6 b where we know D(h, k) > D∗, the expression

N
2 + log (ξ1/2 + ξ1ξ2ξ3k/8)

k
+

Cl2(π/3)

2πD∗ · k (3.35)

has possible maxima only at the end points k = a or k = b. For h/k ∈ B(101, N) with 101 6 k 6 N/3 we
know D(h, k) > 1 and see the end points are bounded by

N
2 + log (ξ1/2 + ξ1ξ2ξ3101/8)

101
+

Cl2(π/3)

2π · 1 · 101 < 0.0454N + 16.315, (3.36)

N
2 + log (ξ1/2 + ξ1ξ2ξ3(N/3)/8)

N/3
+

Cl2(π/3)

2π · 1 · N

3
< 6 + ǫN +

Cl2(π/3)

6π
N.

Therefore

Qhkσ(N) ≪ 1

k3
exp

(

N

[
Cl2(π/3)

6π
+ 2ǫ

])

(h/k ∈ B(101, N), k 6 N/3).

Similarly, for h/k ∈ B(101, N) with N/3 < k 6 N/2 we have D(h, k) > 2 by (2.3). Hence (3.35) is bounded
by the maximum of

6 + ǫN +
Cl2(π/3)

2π · 2 · N

3
, 4 + ǫN +

Cl2(π/3)

2π · 2 · N

2
.

For h/k ∈ B(101, N) with N/2 < k 6 N we have D(h, k) > 3 by (2.4). Hence (3.35) is bounded by the
maximum of

4 + ǫN +
Cl2(π/3)

2π · 3 · N

2
, 2 + ǫN +

Cl2(π/3)

2π · 3 · N

It follows that for any W > Cl2(π/3)/(6π)

Qhkσ(N) ≪ eWN/k3 (h/k ∈ B(101, N)).
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Finally,

∑

h/k∈B(101,N)

Qhkσ(N) ≪
∑

h/k∈B(101,N)

eWN/k3

≪ eWN
N∑

k=1

k∑

h=1

1/k3 = eWN
N∑

k=1

1/k2 ≪ eWN .

Remark 3.6. Theorem 3.5 is still true if we enlarge B(101, N) to B(82, N), i.e. allowing all k > 82. This is
because we obtain 0.0535N + . . . on the right side of (3.36) when we replace 101 by K = 82 on the left (and
use the corresponding ξis as in (3.31)). Furthermore, with K = 61 we find

∑

h/k∈B(61,N)

Chk1(N) = O(eWN ),

needing W ≈ 0.067403, very close to U (see (3.30)). We expect that K can be pushed all the way back to 2
and that with improved techniques it should be possible to prove that for some W < U

∑

h/k∈B(2,N)

Qhkσ(N) = O(eWN ).

This would eliminate the
∑

0<h/k∈F100
term in (1.4) of Theorem 1.1.

What remains from FN −
(
F100 ∪ A(N) ∪ B(101, N)

)
are the subsets C(N), D(N) and E(N) as defined

in (1.13), (1.14) and (1.15). In the following sections we find the asymptotics for each of the corresponding
Qhkσ(N) sums.

4 Further required results

We gather here some more results from [O’S] we will require for developing the asymptotic expansions in
the next sections.

4.1 Some dilogarithm results

In [O’S, Sect. 2.3] we saw the identity

Li2
(
e−2πiz

)
= −Li2

(
e2πiz

)
+ 2π2

(
z2 − (2m + 1)z + m2 + m + 1/6

)
(4.1)

for m < Re(z) < m + 1 where m ∈ Z. Also

Cl2 (2πz) = −i Li2
(
e2πiz

)
+ iπ2

(
z2 − (2m + 1)z + m2 + m + 1/6

)
(4.2)

for m 6 z 6 m + 1.

Lemma 4.1. Consider Im(Li2(e
2πiz)) as a function of y ∈ R. It is positive and decreasing for fixed x ∈ (0, 1/2) and

negative and increasing for fixed x ∈ (1/2, 1).

Lemma 4.2. Consider Re(Li2(e
2πiz)) as a function of y > 0. It is positive and decreasing for fixed x with |x| 6 1/6.

It is negative and increasing for fixed x with 1/4 6 |x| 6 3/4.

Lemma 4.3. For y > 0 we have |Li2(e
2πiz)| 6 Li2(1).

4.2 Approximating products of sines

In the following, let h and k be relatively prime integers with 1 6 h < k. From [O’S, Sect. 2.1] we have

Proposition 4.4. For N/2 < k 6 N

Qhkσ(N) =
(−1)k+1

k2
exp

(−πih(N2 + N − 4σ)

2k

)

exp

(
πi

2
(2Nh + N + h + k − hk)

)
∏−1

N−k(h/k).

16



So estimating Qhkσ(N) requires these further results on sine products from [O’S, Sect. 3]:

Proposition 4.5. For m, L ∈ Z>1 and −1/m < θ < 1/m with θ 6= 0 we have

∏

m(θ) =

(
θ

|θ|

)m(
2 sin(πmθ)

θ

)1/2

exp

(

−Cl2(2πmθ)

2πθ

)

× exp

(
L−1∑

ℓ=1

B2ℓ

(2ℓ)!
(πθ)2ℓ−1 cot(2ℓ−2)(πmθ)

)

exp
(
TL(m, θ)

)
(4.3)

for

TL(m, θ) := (πθ)
2L
∫ m

0

B2L − B2L(x − ⌊x⌋)
(2L)!

ρ(2L)(πxθ) dx +

∫ ∞

0

B2L − B2L(x − ⌊x⌋)
2L(x + m)2L

dx.

Lemma 4.6. For 1 6 m < k/h we have

|T1(m, h/k)| 6 π2h/18 + 1/12. (4.4)

Proposition 4.7. Let W > 0. For δ satisfying 0 < δ 6 1/e and δ log(1/δ) 6 W we have

∏−1
m (h/k) 6 c(h) exp

(
kW

h

)

for 0 6
mh

k
6 δ and

1

2
− δ 6

mh

k
< 1.

Proposition 4.8. Suppose ∆ and W satisfy 0.0048 6 ∆ 6 0.0079 and ∆log 1/∆ 6 W . For the integers h, k, s and
m we require

0 < h < k 6 s, R∆ 6 s/h, ∆s/h 6 m 6 k/(2h).

Then for L := ⌊πe∆ · s/h⌋ we have

∣
∣
∣
∏−1

m (h/k)TL(m, h/k)
∣
∣
∣ 6 (π3/2)c(h) · esW/h, (4.5)

|TL(m, h/k)| 6 π3/2. (4.6)

See [O’S, Sect. 3.4] for the definition of R∆. We will only use it in the case when ∆ = 0.006 and then
R∆ ≈ 130.7.

Corollary 4.9. Let W, ∆, s, h, k, m and L be as in Proposition 4.8. Suppose also that 0 < u/v 6 h/k. Then

∣
∣
∣
∏−1

m (h/k)TL(m, u/v)
∣
∣
∣ 6 (π3/2)c(h) · esW/h, (4.7)

|TL(m, u/v)| 6 π3/2. (4.8)

The main consequence of Propositions 4.5 and 4.8 is:

Proposition 4.10. For W, ∆, s, h, k, m and L as in Proposition 4.8 we have

∏−1
m (h/k) =

(
h

2k sin(πmh/k)

)1/2

exp

(
k

2πh
Cl2
(
2πmh/k

)
)

× exp

(

−
L−1∑

ℓ=1

B2ℓ

(2ℓ)!

(
πh

k

)2ℓ−1

cot(2ℓ−2)

(
πmh

k

))

+ O
(

esW/h
)

(4.9)

for an implied constant depending only on h.

5 The sum C1(N, σ)

We find the asymptotic expansion of

C1(N, σ) :=
∑

h/k∈C(N)

Qhkσ(N) = 2Re
∑

N
2

<k6N, k odd

Q2kσ(N) (5.1)
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in this section and the next. Setting h = 2 in Proposition 4.4 yields

Q2kσ(N) =
1

k2
exp

(

−πi
N2 + N − 4σ

k

)

exp

(
πi

2
(5N + 2 − k)

)
∏−1

N−k(2/k). (5.2)

The sum (5.1) corresponds to 2N/k ∈ [2, 4) and we break it into two parts: C2(N, σ) for 2N/k ∈ [2, 3) and
C∗
2(N, σ) with 2N/k ∈ [3, 4).

2 5/2 3 7/2 4

0.06

0.03

−0.03
2N/k

bbbbb
b

b

b
bbbbbbbbbb

b

b

b

b

b

b
b

︸ ︷︷ ︸

C2(N, σ)
︸ ︷︷ ︸

C∗
2 (N, σ)

2Re Q2kσ(N)

Figure 3: 2Re Q2kσ(N) for σ = 1 and N = 100

5.1 First results for C2(N, σ)

With (5.2) we have

C2(N, σ) = Re
∑

k odd, 2N/k∈[2,3)

−2

k2
exp

(

N

[
πi

2

(

−2N

k
+ 5 − 2

k

2N

)])

× exp

(−πi

2

2N

k

)

exp

(
1

N

[

2πiσ
2N

k

])
∏−1

N−k(2/k). (5.3)

Define

gℓ(z) := − B2ℓ

(2ℓ)!
(πz)2ℓ−1 cot(2ℓ−2) (πz) (5.4)

and set z = z(N, k) := 2N/k. The analog of the sine product approximation, [O’S, Thm. 4.1], we need here
is:

Theorem 5.1. Fix W > 0. Let ∆ be in the range 0.0048 6 ∆ 6 0.0079 and set α = ∆πe. Suppose δ and δ′ satisfy

∆

1 − ∆
< δ 6

1

e
, 0 < δ′ 6

1

e
and δ log 1/δ, δ′ log 1/δ′ 6 W.

Then for all N > 2 · R∆ we have

∏−1
N−k(2/k) = O

(

eWN/2
)

for z ∈ [2, 2 + δ] ∪ [5/2 − δ′, 3) (5.5)

and

∏−1
N−k(2/k) =

1

N1/2
exp

(

N
Cl2(2πz)

2πz

)(
z

2 sin(πz)

)1/2

× exp

(
L−1∑

ℓ=1

gℓ(z)

N2ℓ−1

)

+ O
(

eWN/2
)

for z ∈ (2 + δ, 5/2 − δ′) (5.6)

with L = ⌊α · N/2⌋. The implied constants in (5.5), (5.6) are absolute.
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Proof. The bound (5.5) follows directly from Proposition 4.7 with m = N −k and h = 2. Next, in Proposition
4.10, we set s = N and again m = N − k and h = 2. The condition on m in Proposition 4.10 is equivalent to

2 +
∆

1 − ∆/2
6

2N

k
6

5

2
.

So (5.6) follows from Proposition 4.10 if
∆

1 − ∆/2
6 δ. (5.7)

The inequality (5.7) is equivalent to 1/∆ − 1/δ > 1/2. Since our assumption ∆/(1 − ∆) < δ is equivalent to
1/∆− 1/δ > 1, we have that (5.7) is true.

With (4.2) for m = 2 we obtain

Cl2(2πz) = −i Li2(e
2πiz) + iπ2(z2 − 5z + 37/6) (2 < z < 3).

Therefore
Cl2(2πz)

2πz
+

πi

2

(

−z + 5 − 2

z

)

=
1

2πiz

[

Li2(e
2πiz) − Li2(1) − 4π2

]

, (5.8)

with the right side of (5.8) now holomorphic in the strip 2 < Re(z) < 3.
To combine (5.3) and (5.6) we set, initially with z ∈ (2, 3),

rC(z) :=
1

2πiz

[

Li2(e
2πiz) − Li2(1) − 4π2

]

, (5.9)

qC(z) :=

(
z

2 sin(πz)

)1/2

exp(−πiz/2), (5.10)

vC(z; N, σ) :=
2πiσz

N
+

L−1∑

ℓ=1

gℓ(z)

N2ℓ−1
(L = ⌊α · N/2⌋). (5.11)

Then define

C3(N, σ) :=
−2

N1/2
Re

∑

k odd: z∈(2+δ,5/2−δ′)

1

k2
exp
(
N · rC (z)

)
qC (z) exp

(
vC(z; N, σ)

)
, (5.12)

and it follows from (5.3) and Theorem 5.1 that for σ ∈ R and an absolute implied constant

C2(N, σ) = C3(N, σ) + O(eWN/2). (5.13)

5.2 Expressing C3(N, σ) as an integral

Proposition 5.2. Suppose 3/2 6 Re(z) 6 5/2 and |z − 2| > ε > 0. Also assume that

max
{

1 +
1

ε
, 16

}

<
πe

α
. (5.14)

Then, for an implied constant depending only on ε, α and d,

L−1∑

ℓ=d

gℓ(z)

N2ℓ−1
≪ 1

N2d−1
e−π|y| (d > 2, L = ⌊α · N/2⌋). (5.15)

Proof. For z in this range, we may bound gℓ(z) by
(
(1 + 1/ε)ℓ

)ℓ
+
(
16ℓ
)ℓ

. These bounds get very large for ℓ
large. The condition (5.14) ensures L is small enough that gℓ(z)/N2ℓ−1 remains small. See [O’S, Sect. 4.2] for
the details.

We now fix some of the parameters in Theorem 5.1 and take

W = 0.05, α = 0.006πe ≈ 0.0512, 0.0061 6 δ, δ′ 6 0.01, N > 400. (5.16)

Also, with ε = 0.0061, condition (5.14) is satisfied and Proposition 5.2 implies:
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Corollary 5.3. With δ, δ′ ∈ [0.0061, 0.01] and z ∈ C such that 2 + δ 6 Re(z) 6 5/2 − δ′ we have

vC(z; N, σ) =
2πiσz

N
+

d−1∑

ℓ=1

gℓ(z)

N2ℓ−1
+ O

(
1

N2d−1

)

for 2 6 d 6 L = ⌊0.006πe · N/2⌋ and an implied constant depending only on d.

In the next theorem we assemble the results we need to convert the sum C3(N, σ) in (5.12) into an integral.

Theorem 5.4. The functions rC(z), qC(z) and vC(z; N, σ) are holomorphic for 2 < Re(z) < 5/2. In this strip,

Re

(

rC (z) +
2πij

z

)

6
1

2π|z|2
(

xCl2(2πx) + π2|y|
[
1

3
+ 4(j + 1)

])

(y > 0) (5.17)

Re

(

rC (z) +
2πij

z

)

6
1

2π|z|2
(

xCl2(2πx) + π2|y|
[
1

3
− 4j

])

(y 6 0) (5.18)

for j ∈ R. Also, in the box with 2 + δ 6 Re(z) 6 5/2 − δ′ and −1 6 Im(z) 6 1,

qC(z), exp
(
vC(z; N, σ)

)
≪ 1 (5.19)

for an implied constant depending only on σ ∈ R.

Proof. Since Li2(e
2πiz) is holomorphic away from the vertical branch cuts (−i∞, n] for n ∈ Z, we see that

rC(z) is holomorphic for 2 < Re(z) < 5/2. Then in this strip, using (4.1),

rC (z) +
2πij

z
=

1

2πiz

[

Li2(e
2πiz) − Li2(1) − 4π2(j + 1)

]

=
1

2πiz

[

−Li2(e
−2πiz) + Li2(1) − 4π2(j − 2)

]

− πi(z − 5). (5.20)

The inequalities (5.17) and (5.18) follow, as in [O’S, Sect. 4.3].
Check that for w ∈ C,

−π/2 < arg
(
sin(πw)

)
< π/2 for 0 < Re(w) < 1.

Consequently, −π < arg
(
z/ sin(πz)

)
< π for 2 < Re(z) < 5/2 and so qC(z) is holomorphic in this strip. Also

vC(z; N, σ) is holomorphic here since the only poles of gℓ(z) are at z ∈ Z.
Finally, qC(z) is bounded on the compact box, as is exp

(
vC(z; N, σ)

)
by Corollary 5.3.

By the calculus of residues, see for example [Olv74, p. 300],

∑

a6k6b, k odd

ϕ(k) =
1

2

∫

C

ϕ(z)

2i tan(π(z − 1)/2)
dz (5.21)

for ϕ(z) a holomorphic function and C a positively oriented closed contour surrounding the interval [a, b]
and not surrounding any integers outside this interval. Hence

∑

a6k6b, k odd

1

k2
ϕ(2N/k) =

−1

4N

∫

C

ϕ(z)

2i tan(π(2N/z − 1)/2)
dz

for C now surrounding {2N/k | a 6 k 6 b} with a > 0. Therefore

C3(N, σ) =
1

2N3/2
Re

∫

C1

exp
(
N · rC(z)

) qC(z)

2i tan
(
π(2N/z − 1)/2

) exp
(
vC(z; N, σ)

)
dz (5.22)

where C1 is the positively oriented rectangle with horizontal sides C+
1 , C−

1 having imaginary parts 1/N2,
−1/N2 and vertical sides C1,L, C1,R having real parts 2 + δ and 5/2 − δ′ respectively, as shown in Figure 4.
The next result shows that the integrals over C1,L, C1,R are small.
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2 5/2 3 7/2 4

1/N2

−1/N2

2 + δ 5/2 − δ′

C+
1

C−
1

C1,L C1,R

3 + δ 7/2 − δ′

C+
2

C−
2

C2,L C2,R

Figure 4: The rectangles C1 and C2

Proposition 5.5. For N greater than an absolute constant, we may choose δ, δ′ ∈ [0.0061, 0.01] so that

C3(N, σ) =
1

2N3/2
Re

∫

C+

1
∪C−

1

exp
(
N · rC(z)

) qC(z)

2i tan
(
π(2N/z − 1)/2

) exp
(
vC(z; N, σ)

)
dz + O(eWN/2)

for W = 0.05 and an implied constant depending only on σ.

Proof. The proposition follows from (5.22) if we can show
∫

C1,L∪C1,R
= O(eWN/2). For N large enough, we

may choose δ and δ′ so that C1,L and C1,R pass midway between the poles of 1/ tan
(
π(2N/z− 1)/2

)
. Hence

1

tan
(
π(2N/z − 1)/2

) ≪ 1 (z ∈ C1,L ∪ C1,R). (5.23)

The bound (5.19) from Theorem 5.4 implies

qC(z) exp
(
vC(z; N, σ)

)
≪ 1 (z ∈ C1,L ∪ C1,R). (5.24)

Theorem 5.4 with j = 0 also implies

Re
(
rC(z)

)
<

1

8π

(

xCl2(2πx) +
5π2

N2

)

(z ∈ C1,L ∪ C1,R).

Note that
Cl2(2πx) < 0.24 if 2 6 x 6 2.01, Cl2(2πx) < 0.05 if 2.49 6 x 6 2.5. (5.25)

Therefore

Re
(
rC(z)

)
<

1

8π

(

2.01 × 0.24 +
5π2

N2

)

< 0.025 (z ∈ C1,L, N > 25) (5.26)

and we obtain (5.26) for z ∈ C1,R in the same way. Consequently

exp
(
N · rC(z)

)
≪ exp(0.025N) (z ∈ C1,L ∪ C1,R). (5.27)

The proposition now follows from the bounds (5.23), (5.24) and (5.27).

We have
1

2i tan(π(2N/z − 1)/2)
=

{

1/2 +
∑

j6−1(−1)je2πijN/z if Imz > 0

−1/2 −
∑

j>1(−1)je2πijN/z if Imz < 0
(5.28)

and therefore
∫

C+

1

=
∑′

j60

(−1)j

∫

C+

1

exp
(
N [rC(z) + 2πij/z]

)
qC(z) exp

(
vC(z; N, σ)

)
dz, (5.29)

∫

C−

1

= −
∑′

j>0

(−1)j

∫

C−

1

exp
(
N [rC(z) + 2πij/z]

)
qC(z) exp

(
vC(z; N, σ)

)
dz (5.30)

where
∑′

indicates the j = 0 term is taken with a 1/2 factor. The terms with j = 0, −1 are the largest:
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Proposition 5.6. For W = 0.05 and an implied constant depending only on σ

C3(N, σ) =
−1

2N3/2

∑

j=0,−1

(−1)jRe

∫ 2.49

2.01

exp
(
N [rC(z)+2πij/z]

)
qC(z) exp

(
vC(z; N, σ)

)
dz +O(eWN/2). (5.31)

Proof. As in [O’S, Sect. 4.5], the total contribution to (5.29), (5.30) for all j with |j| > N2 can be shown to be
O(N). Let D+

1 be the three lines which, when added to C+
1 , make a rectangle with top side having imaginary

part 1. Orient the path D+
1 so that it has the same starting and ending points as C+

1 . Since the integrand is
holomorphic we see that

∫

C+

1

=
∫

D+

1

. For integers j with −N2 6 j < 0 we consider
∫

D+

1

exp
(
N [rC(z) + 2πij/z]

)
qC(z) exp

(
vC(z; N, σ)

)
dz. (5.32)

We have qC(z) exp (vC(N, z)) ≪ 1 for z ∈ D+
1 by Theorem 5.4. On the vertical sides of D+

1 we have

Re

(

rC(z) +
2πij

z

)

<
xCl2(2πx)

8π
< 0.02

by Theorem 5.4 and (5.25) if j 6 −2. On the horizontal side of D+
1 , with y = 1, Theorem 5.4 implies

Re

(

rC (z) +
2πij

z

)

6
1

2π|z|2
(

2.5 Cl2(π/3) + π2

[
1

3
+ 4(j + 1)

])

< 0

if j 6 −2. Hence, for each integer j with −N2 6 j 6 −2, (5.32) is O
(
exp(0.02N)

)
. In a similar way, the terms

in (5.30) for 1 6 j 6 N2 are O
(
exp(0.02N)

)
. Moving the lines of integration from C−

1 and C+
1 to [2.01, 2.49]

is valid with (5.24), (5.27) and this completes the proof.

A slightly more detailed argument shows that the j = 0 term in (5.31) is also O(eWN/2):

Proposition 5.7. For W = 0.05 and an implied constant depending only on σ
∫ 2.49

2.01

exp
(
N · rC(z)

)
qC(z) exp

(
vC(z; N, σ)

)
dz = O(eWN/2). (5.33)

Proof. Change the path of integration to the lines joining 2.01, 2.01 − i, 2.49 − i and 2.49. The result follows
if we can show Re(rC(z)) 6 W/2 on these lines. For y 6 0, by (5.20),

Re
(
rC(z)

)
= πy − y

2π|z|2
(
Li2(1) − Re(Li2(e

−2πiz)) + 8π2
)
− xIm(Li2(e

−2πiz))

2π|z|2

6 πy − y

2π|z|2
(
Li2(1) − Re(Li2(e

−2πiz)) + 8π2
)

+
xCl2(2πx)

2π|z|2

using Lemma 4.1. Recalling (5.25) we obtain the following bounds on each segment:

• x = 2.01, −1 6 y 6 0. By Lemma 4.2 we have −Re(Li2(e
−2πiz)) 6 0 so that

Re
(
rC(z)

)
6 πy +

1

2π(x2 + y2)

(
−y(Li2(1) + 8π2) + 0.24x

)
< 0.025.

• x = 2.49, −1 6 y 6 0. By Lemma 4.3 we have −Re(Li2(e
−2πiz)) 6 Li2(1) so that

Re
(
rC(z)

)
6 πy +

1

2π(x2 + y2)

(
−y(2 Li2(1) + 8π2) + 0.05x

)
< 0.01.

• 2 6 x 6 2.5, y = −1. With Lemma 4.3 again

Re
(
rC(z)

)
6 πy +

1

2π(22 + y2)

(
−y(2 Li2(1) + 8π2) + 2.5 Cl2(π/3)

)
< 0.

Since p(z) = −(rC(z) − 2πi/z), and recalling (5.13), we have therefore shown

C2(N, σ) = C4(N, σ) + O(eWN/2) (5.34)

for W = 0.05, an implied constant depending only on σ, and

C4(N, σ) :=
1

2N3/2
Re

∫ 2.49

2.01

exp
(
−N · p(z)

)
qC(z) exp

(
vC(z; N, σ)

)
dz. (5.35)
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5.3 A path through the saddle-point

To apply the saddle-point method, Theorem 1.8, to C4(N, σ) we first locate the unique solution to p′(z) = 0
for 3/2 < Re(z) < 5/2 as

z1 := 2 +
log
(
1 − w(0,−2)

)

2πi
≈ 2.20541 + 0.345648i

by Theorem 1.9. Then we replace the path of integration [2.01, 2.49] in (5.35) with one passing through z1.
Let v = Im(z1)/Re(z1) ≈ 0.156728 and c = 1 + iv. The path we take through the saddle-point z1 is

Q := Q1 ∪Q2 ∪ Q3, the polygonal path between the points 2.01, 2.01c, 2.49c and 2.49 as shown in Figure 5.

2 5/2

0.346

2.205

Q1
Q3

Q2

z1
b

Figure 5: The path Q = Q1 ∪ Q2 ∪ Q3 through z1

For Theorem 1.8 we require the next result.

Theorem 5.8. For the path Q above, passing through the saddle point z1, we have Re(p(z) − p(z1)) > 0 for z ∈ Q
except at z = z1.

Theorem 5.8 seems apparent from Figure 6. We prove it by approximating Re(p(z)) and its derivatives
by the first terms in their series expansions and reducing the issue to a finite computation. This method
was used in [O’S, Sect. 5.2] and we repeat the results from there. To take into account that we are using an
approximation to z1, we give proofs valid in a range 0.15 6 v 6 0.16.

0.01

0.03

0.02

Q1 Q3Q2

z1

b

b

Re[−p(z)]

Figure 6: Graph of Re[−p(z)] for z ∈ Q

Generalizing to pd(z), we examine Re(pd(z)) for z on the ray z = ct for c = 1 + iv with v > 0. We also
write

c = ρeiθ (0 < ρ, 0 < θ < π/2).

For the second derivative we have

d2

dt2
Re[pd(ct)] = R2(L; t) + R∗

2(L; t)
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for

R2(L; t) := −π(24d + 1) sin θ

6ρt3
+

L−1∑

m=1

(

Am(t) cos(2πmt) + Bm(t) sin(2πmt)
)

,

Am(t) := e−2πmvt

(
2

mt2
+ sin θ

(
2πρ

t
+

1

m2πρt3

))

,

Bm(t) := e−2πmvt cos θ

(
2πρ

t
− 1

m2πρt3

)

and

|R∗
2(L; t)| 6 E2(L; t) :=

e−2πLvt

1 − e−2πvt

(
1

πρL2t3
+

2

Lt2
+

2πρ

t

)

.

We see that E2(L; t) is a decreasing function of L and t. We have Am(t) a positive and decreasing function

of t. Also Bm(t) is a positive and decreasing function of t when t >
√

3√
2πρm

. The above formulas for R2(L; t)

use (1.16), which is valid since |e2πiz | 6 1 when Im(z) > 0. For a ray z = ct with Im(c) < 0, the functional
equation (4.1) must be applied first and then similar formulas are found.

Let v1 = 0.15 and v2 = 0.16. Writing ρ1e
iθ1 = 1 + iv1 and ρ2e

iθ2 = 1 + iv2 we have

1 < ρ1 6 ρ 6 ρ2, 0 < θ1 6 θ 6 θ2 < π/2.

For v in the interval [v1, v2], we may bound Am(t), Bm(t) and E2(L; t) from above and below by replacing
v, ρ and θ appropriately by vj , ρj and θj , j = 1, 2. For example

0 < A−
m(t) 6 Am(t) 6 A+

m(t) (v ∈ [v1, v2])

with

A−
m(t) := e−2πmv2t

(
2

mt2
+ sin θ1

(
2πρ1

t
+

1

m2πρ2t3

))

,

A+
m(t) := e−2πmv1t

(
2

mt2
+ sin θ2

(
2πρ2

t
+

1

m2πρ1t3

))

and similarly write 0 < B−
m(t) 6 Bm(t) 6 B+

m(t) and 0 < E−
2 (L; t) 6 E2(L; t) 6 E+

2 (L; t).

Lemma 5.9. Let c = 1 + iv with 0.15 6 v 6 0.16. Then d2

dt2 Re[p(ct)] > 0 for t ∈ [2, 2.35].

Proof. Break up [2, 2.35] into n equal segments [xj−1, xj ]. Then

d2

dt2
Re[p(ct)] > min

16j6n

((

min
t∈[xj−1,xj ]

R2(L; t)

)

− E+
2 (L; xj−1)

)

. (5.36)

Let t = x∗
j,m correspond to the minimum value of cos(2πmt) for t ∈ [xj−1, xj ] (so that x∗

j,m equals xj−1, xj

or a local minimum k/2m for k odd). Similarly, let t = x∗∗
j,m correspond to the minimum value of sin(2πmt)

for t ∈ [xj−1, xj ]. Then

min
t∈[xj−1,xj]

R2(L; t) > − π sin θ2

6ρ1x3
j−1

+

L−1∑

m=1

(

A−
m(xj) cos(2πmx∗

j,m) + B−
m(xj) sin(2πmx∗∗

j,m)
)

(5.37)

where we must replace A−
m(xj) in (5.37) by A+

m(xj−1) if cos(2πmx∗
j,m) < 0 and replace B−

m(xj) in (5.37) by
B+

m(xj−1) if sin(2πmx∗∗
j,m) < 0.

A computation using (5.36) and (5.37) with n = 10 and L = 3 for example shows d2

dt2 Re[p(ct)] > 0.09.

We may analyze the first derivative in a similar way. We have

d

dt
Re[pd(ct)] = R1(L; t) + R∗

1(L; t)
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for

R1(L; t) :=
π(24d + 1) sin θ

12ρt2
+

L−1∑

m=1

(

−Cm(t) cos(2πmt) + Dm(t) sin(2πmt)
)

,

Cm(t) := e−2πmvt

(
1

mt
+

sin θ

m22πρt2

)

, Dm(t) := e−2πmvt cos θ

m22πρt2

and

|R∗
1(L; t)| 6 E1(L; t) :=

e−2πLvt

1 − e−2πvt

(
1

2πρL2t2
+

1

Lt

)

.

We see that E1(L; t) is a decreasing function of L and t. Also Cm(t) and Dm(t) are positive and decreasing
functions of t.

Lemma 5.10. Let c = 1 + iv with 0.15 6 v 6 0.16. Then d
dtRe[p(ct)] > 0 for t ∈ [2.35, 2.5].

Proof. Break [2.35, 2.5] into n equal segments and, as in the proof of Lemma 5.9, bound d
dtRe[p(ct)] from

below on each piece. Taking n = 10 and L = 3 shows d
dtRe[p(ct)] > 0.03 for example.

Corollary 5.11. Let c = 1 + iv with 0.15 6 v 6 0.16. There is a unique solution to d
dtRe[p(ct)] = 0 for t ∈ [2, 2.5]

that we label as t0. We then have Re[p(ct) − p(ct0)] > 0 for t ∈ [2, 2.5] except at t = t0.

Proof. Check that d
dtRe[p(ct)] < 0 when t = 2 and d

dtRe[p(ct)] > 0 when t = 2.35. By Lemma 5.9 we see that
d
dtRe[p(ct)] is strictly increasing for t ∈ [2, 2.35]. It necessarily has a unique zero that we label t0. By Lemma

5.10, d
dtRe[p(ct)] remains > 0 for t ∈ [2.35, 2.5] . Hence Re[p(ct) − p(ct0)] is strictly decreasing on [2, t0) and

strictly increasing on (t0, 2.5] as required.

Proposition 5.12. For 0.15 6 v 6 0.16 we have Re[−p(z)] < 0.024 for z ∈ Q1 ∪ Q3.

Proof. We have x fixed as 2.01 on Q1 and 2.49 on Q3. Write

Re[−p(z)] =
f(y) + g(y)

2π|z|2

for
f(y) := y

(
Li2(1) − Re(Li2(e

2πiz))
)
, g(y) = xIm(Li2(e

2πiz)).

If x = 2.01 or 2.49 it follows from Lemma 4.1 that g(y) is positive and decreasing. Similarly, it follows from
Lemma 4.2 that f(y) is always positive and increasing for y > 0.

For z ∈ Q1, so that x = 2.01 and 0 6 y 6 Y := 2.01 × 0.16 = 0.3216,

Re[−p(z)] 6

{

(f(Y/3) + g(0))/(2π2.012) ≈ 0.0232 y ∈ [0, Y/3]

(f(Y ) + g(Y/3))/(2π(2.012 + (Y/3)2) ≈ 0.0226 y ∈ [Y/3, Y ].

For z ∈ P3, so that x = 2.49 and 0 6 y 6 Y := 2.49 × 0.16 = 0.3984,

Re[−p(z)] 6 (f(Y ) + g(0))/(2π2.492) ≈ 0.021, y ∈ [0, Y ].

Proof of Theorem 5.8. Let v be given by Im(z1)/Re(z1). Then

d

dt
Re[p(ct)]

∣
∣
∣
∣
t=Re(z1)

= Re[cp′(cRe(z1))] = Re[cp′(z1)] = 0.

It follows from Corollary 5.11 that Re[p(z)−p(z1)] > 0 for z ∈ Q2 and z 6= z1. We also note that Re[−p(z1)] ≈
0.0256706.

For z ∈ Q1 ∪ Q3, Proposition 5.12 implies Re[p(z) − p(z1)] > −0.024 + 0.0256 > 0.
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5.4 Applying the saddle-point method

For j ∈ Z>0 put

uσ,j(z) :=
∑

m1+3m2+5m3+···=j

(2πiσz + g1(z))m1

m1!

g2(z)m2

m2!
· · · gj(z)mj

mj !
, (5.38)

with uσ,0 = 1. Recalling the definition of gℓ(z) in (5.4), we see that uσ,j(z) is holomorphic for z 6∈ Z. The
proof of the next proposition uses Corollary 5.3, see [O’S, Sect. 5.3].

Proposition 5.13. For 2.01 6 Re(z) 6 2.49 and |Im(z)| 6 1, say, there is a holomorphic function ζd(z; N, σ) of z
so that

exp
(
vC(z; N, σ)

)
=

d−1∑

j=0

uσ,j(z)

N j
+ ζd(z; N, σ) for ζd(z; N, σ) = O

(
1

Nd

)

with an implied constant depending only on σ and d where 1 6 d 6 2L − 1 and L = ⌊0.006πe · N/2⌋.

We now have everything in place to get the asymptotic expansion of C2(N, σ).

Theorem 5.14. With c0 = −z1e
−πiz1/2 and explicit c1(σ), c2(σ), . . . depending on σ ∈ R we have

C2(N, σ) = Re

[
w(0,−2)−N

N2

(

c0 +
c1(σ)

N
+ · · · + cm−1(σ)

Nm−1

)]

+ O

( |w(0,−2)|−N

Nm+2

)

(5.39)

for an implied constant depending only on σ and m.

Proof. Recall from (1.32) that ep(z1) = w(0,−2). Proposition 5.13 implies

C4(N, σ) = Re

[
d−1∑

j=0

1

2N3/2+j

∫

Q
e−N ·p(z) · qC(z) ·uσ,j(z) dz +

1

2N3/2

∫

Q
e−N ·p(z) · qC(z) · ζd(z; N, σ) dz

]

(5.40)

where the last term in (5.40) is

≪ 1

N3/2

∫

Q

∣
∣
∣e−N ·p(z)

∣
∣
∣ · 1 · 1

Nd
dz ≪ 1

Nd+3/2
e−NRe(p(z1)) =

|w(0,−2)|−N

Nd+3/2

by Theorem 5.8, (5.19) and Proposition 5.13. Applying Theorem 1.8 to each integral in the first part of (5.40)
we obtain

∫

Q
e−N ·p(z) · qC(z) · uσ,j(z) dz = 2e−Np(z1)

(
S−1∑

s=0

Γ(s + 1/2)
a2s(qC · uσ,j)

Ns+1/2
+ O

(
1

NS+1/2

))

. (5.41)

The error term in (5.41) corresponds to an error for C4(N, σ) of size O(|w(0,−2)|−N/Ns+j+2). We choose
S = d so that this error is less than O(|w(0,−2)|−N/Nd+3/2) for all j > 0. Therefore

C4(N, σ) = Re





d−1∑

j=0

1

N j+3/2
e−N ·p(z1)

d−1∑

s=0

Γ(s + 1/2)a2s(qC · uσ,j)

Ns+1/2



+ O

( |w(0,−2)|−N

Nd+3/2

)

= Re



w(0,−2)−N
2d−2∑

t=0

1

N t+2

min(t,d−1)
∑

s=0

Γ(s + 1/2)a2s(qC · uσ,t−s)



+ O

( |w(0,−2)|−N

Nd+3/2

)

= Re

[

w(0,−2)−N
d−2∑

t=0

1

N t+2

t∑

s=0

Γ(s + 1/2)a2s(qC · uσ,t−s)

]

+ O

( |w(0,−2)|−N

Nd+1

)

.

Hence, recalling (5.34) and with

ct(σ) :=

t∑

s=0

Γ(s + 1/2)a2s(qC · uσ,t−s), (5.42)
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we obtain (5.39) in the statement of the theorem.
Use the formula (1.29) for a0 to get

c0(σ) = Γ(1/2)a0(qC · uσ,0) =
√

π
ω

2(ω2p0)1/2
q0

which is independent of σ. The terms p0 and q0 are defined in (1.26), (1.27). Using the identity

p′′(z) = −1

z

(

2p′(z) +
2πi · e2πiz

1 − e2πiz

)

(5.43)

we obtain

p0 = p′′(z1)/2 =
−πie2πiz1

z1w(0,−2)
, q2

0 = qC(z1)
2 =

−iz1

w(0,−2)
. (5.44)

Therefore

c2
0 =

πq2
0

4p0
=

z2
1

4e2πiz1
.

We may take ω = z1 since the path Q2 is a segment of the ray from the origin through z1. A numerical check
then gives us the correct square root:

c0 =
√

π
ω

2(ω2p0)1/2
q0 = − z1

2eπiz1
.

For example, Table 1 compares both sides of (5.39) in Theorem 5.14 with σ = 1 and some different values
of m and N . For other values of σ we get similar agreement.

N m = 1 m = 2 m = 3 m = 4 C2(N, 1)
800 293.204 301.757 303.016 303.119 303.112
1000 −263123. −261461. −261486. −261493. −261493.

Table 1: Theorem 5.14’s approximations to C2(N, 1).

6 The asymptotic behavior of C∗
2(N, σ)

We find the asymptotic expansion of

C∗
2 (N, σ) = 2Re

∑

k odd : 2N/k∈[3,4)

Q2kσ(N),

the second component of C1(N, σ), in this section.

6.1 Approximating the sine product

From (5.2), Q2kσ(N) contains the sine product
∏−1

m (2/k) for m = N − k and k/2 < m < k. The next result
expresses this product in terms of a new variable a.

Proposition 6.1. Let k be an odd positive integer. Write m = a + (k − 1)/2 for 1 6 a 6 (k − 1)/2. Then

∏−1
m (2/k) =

(−1)a

√
k

∏−1
2a (1/k)

∏−1
a (2/k)

for k/2 < m < k.

Proof. The formula
∏−1

k−1(h/k) = (−1)(h−1)(k−1)/2 1

k

from [O’S, Sect. 2.2] implies
∏−1

k−1(2/k) = (−1)(k−1)/2/k and therefore, by symmetry,

∏−1
(k−1)/2(2/k) =

1√
k

.
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Hence

∏−1
m (2/k) =

∏−1
(k−1)/2(2/k)

a∏

j=1

1

2 sin(π(j + (k − 1)/2)2/k)

=
1√
k

a∏

j=1

1

2 sin(π(2j − 1)/k + π)

=
(−1)a

√
k

a∏

j=1

1

2 sin(π(2j − 1)/k)

and the result follows.

In this subsection we define z = z(N, k) := 2(N + 1/2)/k. The next result is the sine product approxima-
tion we need here.

Theorem 6.2. Fix W > 0. Let ∆ be in the range 0.0048 6 ∆ 6 0.0079 and set α = ∆πe. Suppose δ and δ′ satisfy

∆

1 − ∆
< δ 6

1

e
, 0 < δ′ 6

1

e
and δ log 1/δ, δ′ log 1/δ′ 6 W.

Then for all N > 3 · R∆ we have

∏−1
N−k(2/k) = O

(

eWN/3
)

for z ∈ [3, 3 + δ] ∪ [7/2 − δ′, 4) (6.1)

and also for z ∈ (3 + δ, 7/2 − δ′)

∏−1
N−k(2/k) =

(−1)N+(k+1)/2

√
2k

exp

(
N + 1/2

2πz
Cl2(2πz)

)

× exp

(
L−1∑

ℓ=1

gℓ(z)

(2(N + 1/2))2ℓ−1
−

L∗−1∑

ℓ=1

gℓ(z)

(N + 1/2)2ℓ−1

)

+ O
(

eWN/3
)

(6.2)

with L = ⌊α · 2N/3⌋ and L∗ = ⌊α · N/3⌋. The implied constants in (6.1), (6.2) are absolute.

Proof. We have 2N/k ∈ [3, 4) so that N/2 < k 6 2N/3. For m = N − k this corresponds to k/2 < m < k. In
terms of a this means

1 6 a < k/2, 2a/k = z − 3.

For L = 1, Proposition 4.5 implies

∏−1
2a (1/k) =

(
1

2k sin(2πa/k)

)1/2

exp

(
k

2π
Cl2(4πa/k)

)

exp (−T1(2a, 1/k)) ,

∏−1
a (2/k) =

(
1

k sin(2πa/k)

)1/2

exp

(
k

4π
Cl2(4πa/k)

)

exp (−T1(a, 2/k))

so that

∏−1
2a (1/k)

∏−1
a (2/k)

=
1

21/2
exp

(
k

4π
Cl2(4πa/k)

)

exp (−T1(2a, 1/k) + T1(a, 2/k))

=

(
k

2
sin(2πa/k)

)1/2

exp (−T1(2a, 1/k) + 2T1(a, 2/k)) ·
∏−1

a (2/k).

Therefore, employing Lemma 4.6,

∏−1
2a (1/k)

∏−1
a (2/k)

≪ k1/2∏−1
a (2/k) (1 6 a < k/2) (6.3)
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with an absolute implied constant. A similar argument proves

∏−1
2a (1/k)

∏−1
a (2/k)

≪ k1/4
(
∏−1

2a (1/k)
)1/2

(1 6 a < k/2). (6.4)

Then using Proposition 4.7 to bound
∏−1

a (2/k) on the right of (6.3) and noting that k 6 2N/3 proves (6.1).
For positive integers L1, L2, Proposition 4.5 implies

∏−1
2a (1/k)

∏−1
a (2/k)

=
1√
2

exp

(
k

4π
Cl2(4πa/k)

)

exp

(

−
L1−1∑

ℓ=1

B2ℓ

(2ℓ)!

(π

k

)2ℓ−1

cot(2ℓ−2)

(
2aπ

k

))

× exp

(
L2−1∑

ℓ=1

B2ℓ

(2ℓ)!

(
2π

k

)2ℓ−1

cot(2ℓ−2)

(
2aπ

k

))

exp (−TL1
(2a, 1/k) + TL2

(a, 2/k)) . (6.5)

Use Proposition 4.8 with h = 2, m = a and s = 2N/3 to show that, for ∆N/3 6 a 6 k/4,

∏−1
a (2/k)TL2

(a, 2/k) ≪ eWN/3 (6.6)

TL2
(a, 2/k) ≪ 1 (6.7)

with absolute implied constants, L2 := ⌊πe∆ ·N/3⌋ and N > 3 ·R∆. The above inequality (6.6) is valid with
∏−1

a (2/k) replaced by
∏−1

2a (1/k)
/∏−1

a (2/k) using (6.3):

(
∏−1

2a (1/k)
/∏−1

a (2/k)
)

TL2
(a, 2/k) ≪ N1/2eWN/3. (6.8)

Use Proposition 4.8 with h = 1, m = 2a and s = 2N/3 to show that, also for ∆N/3 6 a 6 k/4,

∏−1
2a (1/k)TL1

(2a, 1/k) ≪ e2WN/3 (6.9)

TL1
(2a, 1/k) ≪ 1 (6.10)

with absolute implied constants, L1 := ⌊πe∆ · 2N/3⌋ and N > 3 ·R∆/2. Taking square roots of both sides of

inequality (6.9) and using (6.4) and that |TL1
(2a, 1/k)| ≪ |TL1

(2a, 1/k)|1/2 shows

(
∏−1

2a (1/k)
/∏−1

a (2/k)
)

TL1
(2a, 1/k) ≪ N1/4eWN/3. (6.11)

With the inequalities (6.6) - (6.11) established, the arguments of Proposition 4.10 now go through, applied
to (6.5). This allows us to remove the factor exp (−TL1

(2a, 1/k) + TL2
(a, 2/k)) in (6.5) at the expense of

adding an O(eWN/3) error. The interval ∆N/3 6 a 6 k/4 corresponds to

3 +
∆

1 − ∆/3
6 z 6

7

2

so we require
∆

1 − ∆/3
< δ. (6.12)

The inequality (6.12) is equivalent to 1/∆− 1/δ > 1/3. Since our assumption ∆/(1−∆) < δ is equivalent to
1/∆− 1/δ > 1, we have that (6.12) is true. This completes the proof of (6.2).

We rewrite (5.2) as

Q2kσ(N) =
e−πi/4

k2
exp

(

(N + 1/2)
−πi

2
(z − 5 + 2/z)

)

exp

(
πi(16σ + 1)z

8(N + 1/2)

)
∏−1

N−k(2/k)

and combine with (6.2) from Theorem 6.2 as follows. With (4.2) for m = 3 we obtain

Cl2(2πz) = −i Li2(e
2πiz) + iπ2(z2 − 7z + 73/6) (3 < z < 4).

Hence
Cl2(2πz)

2πz
− πi

2
(z − 5 + 2/z) = −πi +

1

2πiz

[

Li2(e
2πiz) − Li2(1) − 10π2

]

.
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Define the following functions

r∗C(z) :=
1

2πiz

[

Li2(e
2πiz) − Li2(1) − 10π2

]

,

q∗C(z) := e−3πi/4
√

z,

v∗C(z; N, σ) :=
πi(16σ + 1)z

8(N + 1/2)
+

L−1∑

ℓ=1

gℓ(z)

(2(N + 1/2))2ℓ−1
−

L∗−1∑

ℓ=1

gℓ(z)

(N + 1/2)2ℓ−1

for L = ⌊α · 2N/3⌋ and L∗ = ⌊α · N/3⌋. Set

C∗
3 (N, σ) :=

1

(N + 1/2)1/2
Re

∑

k odd : z∈(3+δ,7/2−δ′)

(−1)(k+1)/2

k2
exp
(
(N + 1/2)r∗C(z)

)
q∗C(z) exp

(
v∗C(z; N, σ)

)
.

It follows from Theorem 6.2 that

C∗
2 (N, σ) = C∗

3(N, σ) + O(eWN/3). (6.13)

6.2 Expressing C∗

3
(N, σ) as an integral

Similarly to Proposition 5.2 we have

Proposition 6.3. Suppose 5/2 6 Re(z) 6 7/2 and |z − 3| > ε > 0 and assume max{1 + 1
ε , 16} < πe

α . Then for
d > 2,

L−1∑

ℓ=d

gℓ(z)

(2(N + 1/2))2ℓ−1
−

L∗−1∑

ℓ=d

gℓ(z)

(N + 1/2)2ℓ−1
≪ 1

N2d−1
e−π|y| (6.14)

where L = ⌊α · 2N/3⌋, L∗ = ⌊α · N/3⌋ and the implied constant depends only on ε, α and d.

Fixing the choice of constants in (5.16) and with ε = 0.0061 and

gC,ℓ(z) := gℓ(z)(2−(2ℓ−1) − 1) (6.15)

we obtain:

Corollary 6.4. With δ, δ′ ∈ [0.0061, 0.01] and z ∈ C such that 3 + δ 6 Re(z) 6 7/2 − δ′ we have

v∗C(z; N, σ) =
πi(16σ + 1)z

8(N + 1/2)
+

d−1∑

ℓ=1

gC,ℓ(z)

(N + 1/2)2ℓ−1
+ O

(
1

N2d−1

)

for 2 6 d 6 L∗ = ⌊0.006πe · N/3⌋ and an implied constant depending only on d.

Next,

r∗C (z) +
2πi

z
(j − 1/2) =

1

2πiz

[

−Li2(1) + Li2(e
2πiz) − 4π2(j + 2)

]

,

r∗C (z) +
2πi

z
(j + 1/2) =

1

2πiz

[

Li2(1) − Li2(e
−2πiz) − 4π2(j − 3)

]

− πi(2z − 7) (6.16)

where (6.16) follows from (4.1) when 3 < Re(z) < 4. Then with a similar proof to Theorem 5.4 we have

Theorem 6.5. The functions r∗C(z), q∗C(z) and v∗C(z; N, σ) are holomorphic for 3 < Re(z) < 7/2. In this strip

Re

(

r∗C (z) +
2πi

z
(j − 1/2)

)

6
1

2π|z|2
(

xCl2(2πx) + π2|y|
[
1

3
+ 4(j + 2)

])

(y > 0) (6.17)

Re

(

r∗C (z) +
2πi

z
(j + 1/2)

)

6
1

2π|z|2
(

xCl2(2πx) + π2|y|
[
1

3
− 4(j + 3/2)

])

(y 6 0) (6.18)

for j ∈ R. Also, in the box with 3 + δ 6 Re(z) 6 7/2 − δ′ and −1 6 Im(z) 6 1,

q∗C(z), exp
(
v∗C(z; N, σ)

)
≪ 1 (6.19)

for an implied constant depending only on σ ∈ R.
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By the calculus of residues,

∑

a6k6b, k odd

(−1)(k+1)/2ϕ(k) =
1

2

∫

C

ϕ(z)

2i cos(πz/2)
dz

for ϕ(z) a holomorphic function and C a positively oriented closed contour surrounding the interval [a, b]
and not surrounding any integers outside this interval. Hence

∑

a6k6b, k odd

(−1)(k+1)/2

k2
ϕ(2(N + 1/2)/k) =

−1

4(N + 1/2)

∫
ϕ(z)

2i cos(π(N + 1/2)/z)
dz, (6.20)

for C now surrounding {2(N + 1/2)/k | a 6 k 6 b} with a > 0. Therefore

C∗
3 (N, σ) =

−1

4(N + 1/2)3/2
Re

∫

C2

exp
(
(N + 1/2)r∗C(z)

) q∗C(z)

2i cos(π(N + 1/2)/z)
exp
(
v∗C(z; N, σ)

)
dz (6.21)

where C2 is the positively oriented rectangle with horizontal sides C+
2 , C−

2 having imaginary parts 1/N2,
−1/N2 and vertical sides C2,L, C2,R having real parts 3 + δ and 7/2 − δ′ respectively, as shown in Figure 4.

Arguing as in Proposition 5.5 proves the contribution to (6.21) from integrating over the vertical sides
C2,L, C2,R is O(e0.016N ). We have

1

2i cos(π(N + 1/2)/z)
= −i ×

{∑

j60(−1)j exp
(

2πi
z (N + 1/2)(j − 1/2)

)
if Imz > 0

∑

j>0(−1)j exp
(

2πi
z (N + 1/2)(j + 1/2)

)
if Imz < 0.

(6.22)

Therefore

− 4(N + 1/2)3/2C∗
3 (N, σ)

=
∑

j60

(−1)jIm

∫

C+

2

exp

(

(N + 1/2)

[

r∗C(z) +
2πi

z
(j − 1/2)

])

q∗C(z) exp
(
v∗C(z; N, σ)

)
dz

+
∑

j>0

(−1)jIm

∫

C−

2

exp

(

(N + 1/2)

[

r∗C(z) +
2πi

z
(j + 1/2)

])

q∗C(z) exp
(
v∗C(z; N, σ)

)
dz + O(e0.016N ).

A similar proof to Proposition 5.6’s, employing Theorem 6.5, shows that the total size of all but the j = −1,
−2 terms above is O(e0.013N ). Let d = j + 2 and we see pd(z) = −(r∗C(z) + 2πi(j − 1/2)/z) so that

4(N + 1/2)3/2C∗
3(N, σ)

=
∑

d=0,1

(−1)dIm

∫ 3.49

3.01

exp
(
−(N + 1/2)pd(z)

)
q∗C(z) exp

(
v∗C(z; N, σ)

)
dz + O(e0.016N ). (6.23)

6.3 Paths through the saddle-points

We treat the d = 0 case of (6.23) first. The unique solution to p′(z) = 0 for 5/2 < Re(z) < 7/2 is

z2 := 3 +
log
(
1 − w(0,−3)

)

2πi
≈ 3.21625 + 0.402898i

by Theorem 1.9. Let v = Im(z2)/Re(z2) ≈ 0.125269 and c = 1 + iv. The path we take through the saddle
point z2 is R := R1 ∪R2 ∪R3, the polygonal path between the points 3.01, 3.01c, 3.49c and 3.49.

A similar proof to that of Theorem 5.8 shows that Re[p(z)− p(z2)] > 0 for z ∈ R except at z = z2, as seen
in Figure 7. Hence

Re[−p(z)] 6 Re[−p(z2)] ≈ 0.013764 (z ∈ R)

and it follows that the term corresponding to d = 0 in (6.23) is O(e0.014N ).
Define

C∗
4(N, σ) :=

−1

4(N + 1/2)3/2
Im

∫ 3.49

3.01

exp
(
−(N + 1/2)p1(z)

)
q∗C(z) exp

(
v∗C(z; N, σ)

)
dz (6.24)
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0.01

0.02

R1 R3R2

z2

b

b

Re[−p(z)]

Figure 7: Graph of Re[−p(z)] for z ∈ R

and we now know from (6.13), (6.23) and the above that

C∗
2 (N, σ) = C∗

4(N, σ) + O(eWN/3). (6.25)

The unique solution to p′1(z) = 0 for 5/2 < Re(z) < 7/2 is

z3 := 3 +
log
(
1 − w(1,−3)

)

2πi
≈ 3.08382− 0.0833451i

by Theorem 1.9. Let v = Im(z3)/Re(z3) ≈ −0.027027 and c = 1 + iv. The path we take through the saddle
point z3 is S := S1 ∪ S2 ∪ S3, the polygonal path between the points 3.01, 3.01c, 3.49c and 3.49. A similar
proof to that of Theorem 5.8 shows that Re[p1(z) − p1(z3)] > 0 for z ∈ S except at z = z3. This is seen in
Figure 8.

0.01
0.02
0.03
0.04

S1 S3S2

z3

b

b

Re[−p1(z)]

Figure 8: Graph of Re[−p1(z)] for z ∈ S

6.4 Applying the saddle-point method

Recall (6.15) and for j ∈ Z>0 put

u∗
σ,j(z) :=

∑

m1+3m2+5m3+···=j

(πi(16σ + 1)z/8 + gC,1(z))m1

m1!

gC,2(z)m2

m2!
· · · gC,j(z)mj

mj !
,

with u∗
σ,0 = 1. Similarly to Proposition 5.13 we have

Proposition 6.6. For 3.01 6 Re(z) 6 3.49 and |Im(z)| 6 1, say, there is a holomorphic function ζ∗d (z; N, σ) of z so
that

exp
(
v∗C(z; N, σ)

)
=

d−1∑

j=0

u∗
σ,j(z)

(N + 1/2)j
+ ζ∗d (z; N, σ) for ζ∗d(z; N, σ) = O

(
1

Nd

)

with an implied constant depending only on σ and d where 1 6 d 6 2L − 1 and L = ⌊0.006πe · N/2⌋.

Theorem 6.7. With c∗0 = −z3e
−πiz3/4 and explicit c∗1(σ), c∗2(σ), . . . depending on σ ∈ R we have

C∗
2 (N, σ) = Re

[
w(1,−3)−N

N2

(

c∗0 +
c∗1(σ)

N
+ · · · + c∗m−1(σ)

Nm−1

)]

+ O

( |w(1,−3)|−N

Nm+2

)

(6.26)

for an implied constant depending only on σ and m.
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Proof. As in Theorem 5.14, applying the saddle-point method to (6.24), with the path of integration moved
to S, yields

C∗
4 (N, σ) = Re

[

e−(N+1/2)·p1(z3)
d−2∑

t=0

1

(N + 1/2)t+2

t∑

s=0

Γ(s + 1/2)

2
a2s(iq

∗
C · u∗

σ,t−s)

]

+ O

( |w(1,−3)|−N

Nd+1

)

.

From (1.32) we know that ep1(z3) = w(1,−3). Hence, set

c∗∗t (σ) := e−p1(z3)/2
t∑

s=0

Γ(s + 1/2)a2s(iq
∗
C · u∗

σ,t−s)/2. (6.27)

We want to convert the above series in 1/(N + 1/2) to one in 1/N . With the Binomial Theorem we have
(1 + z)−j =

∑∞
r=0

(−j
r

)
zr for |z| < 1. Also, by Taylor’s Theorem,

1

(1 + z)j
=

m−1∑

r=0

(−j

r

)

zr + O(zm) (|z| < 1). (6.28)

With z = 1/(2N) above we find

αj

(N + 1/2)j+2
=

∞∑

r=0

(−j − 2

r

)
2−r · αj

N j+2+r

for any αjs, and can write

α0

(N + 1/2)2
+

α1

(N + 1/2)3
+ · · · =

β0

N2
+

β1

N3
+ · · ·

with

βt =
∑

j+r=t

(−j − 2

r

)

2−r · αj =

t∑

j=0

(−j − 2

t − j

)

2j−t · αj =

t∑

j=0

(−2)j−t

(
t + 1

j + 1

)

αj .

So we set

c∗t (σ) :=

t∑

j=0

(−2)j−t

(
t + 1

j + 1

)

c∗∗j (σ)

and with (6.25) we obtain (6.26) in the statement of the theorem. Note that the omitted terms satisfy

∞∑

t=m

c∗t (σ)

N t
= O

(
1

Nm

)

by (6.28) and can be incorporated into the error term of (6.26).
A similar computation to that of c0 in the proof of Theorem 5.14 shows that

(
c∗0(σ)

)2
= z2

3e−2πiz3/16

and a numerical check then indicates that the correct square root has a minus sign.

For example, Table 2 compares both sides of (6.26) in Theorem 6.7 for some different values of m and N .
This is for σ = 1 and the results for other values of σ are similar.

N m = 1 m = 2 m = 3 m = 4 C∗
2 (N, 1)

800 1.43938× 106 1.39381× 106 1.3934× 106 1.39341× 106 1.39341× 106

1000 1.7278× 109 1.74062× 109 1.74028× 109 1.74028× 109 1.74028× 109

Table 2: Theorem 6.7’s approximations to C∗
2 (N, 1).

A consequence of Theorem 5.14 is that

C2(N, σ) = O(eUCN/N2) for UC := − log |w(0,−2)| ≈ 0.0256706. (6.29)

Since − log |w(1,−3)| ≈ 0.0356795 we see that C2(N, σ) is much smaller than C∗
2(N, σ) (despite appearances

in Figure 3) and is bounded by the error term in (6.26). Therefore, Theorem 1.5 on the asymptotic expansion
of C1(N, σ) = C2(N, σ) + C∗

2 (N, σ) follows from Theorems 5.14 and 6.7.
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7 The sum D1(N, σ)

We find the asymptotic expansion of

D1(N, σ) :=
∑

h/k∈D(N)

Qhkσ(N) = 2Re
∑

N
2

<k6N, k odd

Q( k−1

2
)kσ(N)

in this section. With k odd, setting h = (k − 1)/2 in Proposition 4.4 yields

Q(k−1

2 )kσ(N) =
1

k2
exp

(
πi

4

[
N2 + N − 4σ

k

])

× exp

(−πi

4

[

(N − k)(N − k + 1) − 3k − 3
])
∏−1

N−k((k − 1)/2k). (7.1)

7.1 D1(N, σ) for N odd

If N is odd then N − k is even and (N − k)(N − k + 1) ≡ k − N mod 8. Hence (7.1) becomes

Q(k−1

2 )kσ(N) =
1

k2
exp

(

N

[
πi

4

(
N

k
+ 1 +

2k

N

)])

× exp

(
πi

4

(
N

k
+ 3

))

exp

(
1

N

[

−πiσ
N

k

])
∏−1

N−k((k − 1)/2k). (7.2)

We next get
∏−1

N−k((k − 1)/2k) into the right form to apply Proposition 4.5.

Proposition 7.1. For k odd and m even with 0 6 m < k we have

∏−1
m ((k − 1)/2k) =

∏−1
m (1/k)

∏−1
m (1/2k)

×
∏−2

m/2(1/k)
∏−1

m/2(2/k)
. (7.3)

Proof. Since

sin(πj(k − 1)/2k) =

{

(−1)j/2+1 sin(πj/2k) j even

(−1)(j−1)/2 cos(πj/2k) j odd

we have
∏−1

m ((k − 1)/2k) =
∏

16j6m
j even

(−1)j/2+1

2 sin(πj/2k)

∏

16j6m
j odd

(−1)(j−1)/2

2 cos(πj/2k)
. (7.4)

Hence

∏−1
m ((k − 1)/2k) =

∏−1
m/2(1/k)

∏

16j6m
j odd

1

2 cos(πj/2k)

=
∏−1

m/2(1/k)
∏

16j6m

1

2 cos(πj/2k)

/
∏

16j6m/2

1

2 cos(πj/k)
. (7.5)

Use the identity 2 sin 2θ = 2 sin θ · 2 cos θ to convert the cosines in (7.5) back to sines and complete the
proof.

Recall the definition of gℓ(z) in (5.4), define

g∗ℓ (z) := − B2ℓ

(2ℓ)!
(πz/2)2ℓ−1 cot(2ℓ−2) (π(z − 1)/2) (7.6)

and set z = z(N, k) := N/k. The sine product approximation we need is as follows.
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Theorem 7.2. Fix W > 0. Let ∆ be in the range 0.0048 6 ∆ 6 0.0079 and set α = ∆πe. Suppose δ and δ′ satisfy

∆

1 − ∆
< δ 6

1

e
, 0 < δ′ 6

1

e
and δ log 1/δ, δ′ log 1/δ′ 6 W.

Then for all N odd > 2 · R∆ we have

∏−1
N−k((k − 1)/2k) = O

(

eWN/2
)

for z ∈ [1, 1 + δ] ∪ [3/2 − δ′, 2) (7.7)

and

∏−1
N−k((k − 1)/2k) = exp

(

N
Cl2(2πz)

4πz

)(
z

2N sin(π(z − 1)/2)

)1/2

exp

(
L−1∑

ℓ=1

gℓ(z) − g∗ℓ (z)

N2ℓ−1

)

× exp

(
L∗−1∑

ℓ=1

2g∗ℓ (z) − gℓ(z)

(N/2)2ℓ−1

)

+ O
(

eWN/2
)

for z ∈ (1 + δ, 3/2 − δ′) (7.8)

with L = ⌊α · N⌋ and L∗ = ⌊α · N/2⌋. The implied constants in (7.7), (7.8) are absolute.

Proof. Applying Proposition 4.5 to each of the factors on the right of (7.3) shows

∏−1
m ((k − 1)/2k) =

(
1

2k sin(πm/(2k))

)1/2

exp

(
k

4π
Cl2(2πm/k)

)

× exp

(

−
L1−1∑

ℓ=1

B2ℓ

(2ℓ)!

(π

k

)2ℓ−1

cot(2ℓ−2)
(πm

k

)
)

exp (−TL1
(m, 1/k))

× exp

(

−2

L2−1∑

ℓ=1

B2ℓ

(2ℓ)!

(π

k

)2ℓ−1

cot(2ℓ−2)
(πm

2k

)
)

exp (−2TL2
(m/2, 1/k))

× exp

(
L3−1∑

ℓ=1

B2ℓ

(2ℓ)!

(
2π

k

)2ℓ−1

cot(2ℓ−2)
(πm

k

)
)

exp (TL3
(m/2, 2/k))

× exp

(
L4−1∑

ℓ=1

B2ℓ

(2ℓ)!

( π

2k

)2ℓ−1

cot(2ℓ−2)
(πm

2k

)
)

exp (TL4
(m, 1/(2k))) (7.9)

for 1 6 m < k and positive integers L1, L2, L3, L4.
First we set each Li to 1 in (7.9) to see

∏−1
m ((k − 1)/2k) =

(
1

2k sin(πm/(2k))

)1/2

exp

(
k

4π
Cl2(2πm/k)

)

× exp (−T1(m, 1/k) − 2T1(m/2, 1/k) + T1(m/2, 2/k) + T1(m, 1/(2k))) . (7.10)

Comparing (7.10) with the expansion of
∏−1

m/2(2/k) from Proposition 4.5 then shows

∏−1
m ((k − 1)/2k) = (cos(πm/(2k)))1/2

× exp (−T1(m, 1/k) − 2T1(m/2, 1/k) + 2T1(m/2, 2/k) + T1(m, 1/(2k)))
∏−1

m/2(2/k). (7.11)

It follows from (7.11) and Lemma 4.6 that for 0 6 m < k,

∏−1
m ((k − 1)/2k) ≪

∏−1
m/2(2/k) (7.12)

with an absolute implied constant. Similarly, by comparing (7.10) with the expansion of
∏−1

m (1/k) from
Proposition 4.5,

∏−1
m ((k − 1)/2k) ≪

(
∏−1

m (1/k)
)1/2

. (7.13)
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Using Proposition 4.7 to bound
∏−1

m/2(2/k) on the right of (7.12) and noting that k 6 N proves (7.7).

To prove (7.8) we wish to apply the argument of Proposition 4.10 to (7.9). This requires finding L1, L2,
L3 and L4 so that, for m = N − k,

∏−1
m ((k − 1)/2k)

(

|TL1
(m, 1/k)| + |TL2

(m/2, 1/k)|+ |TL3
(m/2, 2/k)|+ |TL4

(m, 1/(2k))|
)

≪ eWN/2 (7.14)

|TL1
(m, 1/k)| + |TL2

(m/2, 1/k)|+ |TL3
(m/2, 2/k)|+ |TL4

(m, 1/(2k))| ≪ 1. (7.15)

We examine the four terms TLi in (7.14) and (7.15) separately:

• The term TL3
(m/2, 2/k). Use Proposition 4.8 with h = 2 and s = N to show that, for ∆N/2 6 m/2 6

k/4,

∣
∣
∣
∏−1

m/2(2/k) · TL3
(m/2, 2/k)

∣
∣
∣≪ eWN/2 (7.16)

|TL3
(m/2, 2/k)| ≪ 1 (7.17)

with absolute implied constants, L3 := ⌊πe∆ · N/2⌋ and N > 2 · R∆. Inequality (7.16) is valid with
∏−1

m/2(2/k) replaced by
∏−1

m ((k − 1)/2k) using (7.12):

∣
∣
∣
∏−1

m ((k − 1)/2k) · TL3
(m/2, 2/k)

∣
∣
∣≪ eWN/2. (7.18)

• The term TL2
(m/2, 1/k). To prove

∣
∣
∣
∏−1

m ((k − 1)/2k) · TL2
(m/2, 1/k)

∣
∣
∣≪ eWN/2 (7.19)

|TL2
(m/2, 1/k)| ≪ 1 (7.20)

for ∆N/2 6 m/2 6 k/4, choose L2 = L3 and note that (7.16) and (7.17) are valid with 2/k replaced by
1/k using Corollary 4.9.

• The term TL1
(m, 1/k). Use Proposition 4.8 with h = 1 and s = N to show that, also for ∆N 6 m 6 k/2,

∣
∣
∣
∏−1

m (1/k) · TL1
(m, 1/k)

∣
∣
∣≪ eWN (7.21)

|TL1
(m, 1/k)| ≪ 1 (7.22)

with absolute implied constants, L1 := ⌊πe∆ · N⌋ and N > R∆. Taking square roots of both sides of
(7.21) and using (7.13) shows

∣
∣
∣
∏−1

m ((k − 1)/2k) · TL1
(m, 1/k)

∣
∣
∣≪ eWN/2. (7.23)

• The term TL4
(m, 1/(2k)). To prove

∣
∣
∣
∏−1

m ((k − 1)/2k) · TL4
(m, 1/(2k))

∣
∣
∣≪ eWN/2 (7.24)

|TL4
(m, 1/(2k))| ≪ 1 (7.25)

for ∆N 6 m 6 k/2, choose L4 = L1 and note that (7.21) and (7.22) are valid with 1/k replaced by
1/(2k) using Corollary 4.9.

The inequalities (7.17) - (7.25) establish (7.14), (7.15) and the arguments of Proposition 4.10 now go
through, applied to (7.9). This allows us to remove the exp(TLi) factors in (7.9) at the expense of adding
an O(eWN/2) error. Write L for L1, L4 and L∗ for L2, L3. The interval ∆N 6 m 6 k/2 corresponds to

1 +
∆

1 − ∆
6 z 6 3/2.

This completes the proof of (7.8).
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It simplifies things to work with the conjugate of (7.2):

Q(k−1

2 )kσ(N) =
1

k2
exp

(

N

[−πi

4

(

z + 1 +
2

z

)])

exp

(−πi

4
(z + 3)

)

exp

(
πiσz

N

)
∏−1

N−k((k − 1)/2k).

(7.26)
From (4.2) we have

Cl2(2πz) = −i Li2(e
2πiz) + iπ2(z2 − 3z + 13/6) (1 < z < 2)

so that
Cl2(2πz)

4πz
− πi

4

(

z + 1 +
2

z

)

= −πi +
1

4πiz

[

Li2(e
2πiz) − Li2(1)

]

.

Set

rD(z) :=
1

4πiz

[

Li2(e
2πiz) − Li2(1)

]

(7.27)

qD(z) :=

(
z

2 sin(π(z − 1)/2)

)1/2

exp

(

−πi

4
(z + 3)

)

vD(z; N, σ) :=
πiσz

N
+

L−1∑

ℓ=1

gℓ(z) − g∗ℓ (z)

N2ℓ−1
+

L∗−1∑

ℓ=1

2g∗ℓ (z) − gℓ(z)

(N/2)2ℓ−1
(7.28)

for L = ⌊α · N⌋ and L∗ = ⌊α · N/2⌋. With N odd, define

D2(N, σ) :=
−2

N1/2
Re

∑

k odd : z∈(1+δ, 3/2−δ′)

1

k2
exp
(
N · rD(z)

)
qD(z) exp

(
vD(z; N, σ)

)
. (7.29)

It follows from (7.26) and Theorem 7.2 that for σ ∈ R and an absolute implied constant

D1(N, σ) = D2(N, σ) + O(eWN/2) (N odd). (7.30)

7.2 Expressing D2(N, σ) as an integral for N odd

Similarly to Proposition 5.2 we have

Proposition 7.3. Suppose 1/2 6 Re(z) 6 3/2 and |z − 1| > ε > 0 and assume max{1 + 1
ε , 16} < πe

α . Then

L−1∑

ℓ=d

gℓ(z) − g∗ℓ (z)

N2ℓ−1
+

L∗−1∑

ℓ=d

2g∗ℓ (z) − gℓ(z)

(N/2)2ℓ−1
≪ 1

N2d−1
e−π|y|/2 (7.31)

for d > 2 where L = ⌊α · N⌋, L∗ = ⌊α · N/2⌋ and the implied constant depends only on ε, α and d.

Fixing the choice of constants in (5.16) and with ε = 0.0061 and

gD,ℓ(z) := gℓ(z) − g∗ℓ (z) + 22ℓ−1
(
2g∗ℓ (z) − gℓ(z)

)
(7.32)

we obtain:

Corollary 7.4. With δ, δ′ ∈ [0.0061, 0.01] and z ∈ C such that 1 + δ < Re(z) < 3/2 − δ′ we have

vD(z; N, σ) =
πiσz

N
+

d−1∑

ℓ=1

gD,ℓ(z)

N2ℓ−1
+ O

(
1

N2d−1

)

for 2 6 d 6 L∗ = ⌊0.006πe · N/2⌋ and an implied constant depending only on d.

Similarly to Theorem 5.4 we have
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Theorem 7.5. The functions rD(z), qD(z) and vD(z; N, σ) are holomorphic for 1 < Re(z) < 3/2. In this strip

Re

(

rD (z) +
πij

z

)

6
1

4π|z|2
(

xCl2(2πx) + π2|y|
[
1

3
+ 4j

])

(y > 0) (7.33)

Re

(

rD (z) +
πij

z

)

6
1

4π|z|2
(

xCl2(2πx) + π2|y|
[
1

3
− 4(j − 1/2)

])

(y 6 0). (7.34)

for j ∈ R. Also, in the box with 1 + δ 6 Re(z) 6 3/2 − δ′ and −1 6 Im(z) 6 1,

qD(z), exp
(
vD(z; N, σ)

)
≪ 1 (7.35)

for an implied constant depending only on σ ∈ R.

Let C be the positively oriented rectangle with horizontal sides C+, C− having imaginary parts 1/N2,
−1/N2 and vertical sides CL, CR having real parts 1 + δ and 3/2− δ′ respectively, as used in [O’S, Sect. 4.4].
Recalling (5.21), (5.28) and arguing as in Proposition 5.5, we find

D2(N, σ) =
(−2)

N1/2

(−1)

2N
Re

∫

C

exp
(
N · rD(z)

) qD(z)

2i tan(π(N/z − 1)/2)
exp
(
vD(z; N, σ)

)
dz

=
1

N3/2
Re




∑′

j60

(−1)j

∫

C+

exp
(
N [rD(z) + πij/z]

)
qD(z) exp

(
vD(z; N, σ)

)
dz

−
∑′

j>0

(−1)j

∫

C−

exp
(
N [rD(z) + πij/z]

)
qD(z) exp

(
vD(z; N, σ)

)
dz



+ O(eWN/2).

With Theorem 7.5, and reasoning as in Proposition 5.6, we see that the two j = 0 terms above dominate and
D2(N, σ) = D3(N, σ) + O(eWN/2) for

D3(N, σ) :=
−1

N3/2
Re

∫ 1.49

1.01

exp
(
−N · p(z)/2

)
qD(z) exp

(
vD(z; N, σ)

)
dz (N odd) (7.36)

since rD(z) = −p(z)/2.

7.3 D1(N − 1, σ) for N odd

Assume N is odd. If v is even then v − k is odd and (v − k)(v − k + 1) ≡ v − k + 1 mod 8. Hence, with
v = N − 1, the conjugate of (7.1) becomes

Q( k−1

2 )kσ(N − 1) =
1

k2
exp

(

N

[−πi

4

(

z − 1 +
4

z

)])

exp

(
πi

4
(z − 3)

)

exp

(
πiσz

N

)
∏−1

N−1−k((k − 1)/2k).

(7.37)
For m even, (7.4) implies

∏−1
m−1((k − 1)/(2k)) = 2(−1)m/2+1 sin(πm/(2k))

∏

16j6m
j even

(−1)j/2+1

2 sin(πj/2k)

∏

16j6m
j odd

(−1)(j−1)/2

2 cos(πj/2k)

= 2(−1)m/2+1 sin(πm/(2k)) · ∏−1
m ((k − 1)/(2k)).

It follows that for N odd we have

∏−1
N−1−k((k − 1)/(2k)) = 2(−1)(N−k)/2+1 sin(π(N/k − 1)/2) ·

∏−1
N−k((k − 1)/(2k)) (7.38)

and can use our results from the last subsection. Recall rD(z) and vD(z; N, σ) from (7.27), (7.28) and set

q∗D(z) := 2 sin(π(z − 1)/2)

(
z

2 sin(π(z − 1)/2)

)1/2

exp

(
πi

4
(z − 1)

)

.
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With N odd, define

D2(N − 1, σ) :=
−2

N1/2
Re

∑

k odd : z∈(1+δ, 3/2−δ′)

(−1)(k+1)/2

k2
exp

(

N

[

rD(z) − πi

2z

])

q∗D(z) exp
(
vD(z; N, σ)

)
.

It follows from (7.37), (7.38) and Theorem 7.2 that

D1(N − 1, σ) = D2(N − 1, σ) + O(eWN/2) (N odd).

The next result is mostly a restatement of Theorem 7.5.

Theorem 7.6. The functions rD(z)− πi
2z , q∗D(z) and vD(z; N, σ) are holomorphic for 1 < Re(z) < 3/2. In this strip

Re

(

rD (z) − πi

2z
+

πi(j − 1/2)

z

)

6
1

4π|z|2
(

xCl2(2πx) + π2|y|
[
1

3
+ 4(j − 1)

])

(y > 0) (7.39)

Re

(

rD (z) − πi

2z
+

πi(j + 1/2)

z

)

6
1

4π|z|2
(

xCl2(2πx) + π2|y|
[
1

3
− 4(j − 1/2)

])

(y 6 0) (7.40)

for j ∈ R. Also, in the box with 1 + δ 6 Re(z) 6 3/2 − δ′ and −1 6 Im(z) 6 1,

q∗D(z), exp
(
vD(z; N, σ)

)
≪ 1 (7.41)

for an implied constant depending only on σ ∈ R.

With the rectangle C from the last subsection and recalling (6.20), (6.22)

D2(N − 1, σ) =
(−2)

N1/2

(−1)

2N
Re

∫

C

exp

(

N

[

rD(z) − πi

2z

])
q∗D(z)

2i cos(πN/(2z))
exp
(
vD(z; N, σ)

)
dz

=
−1

N3/2
Re



i
∑

j60

(−1)j

∫

C+

exp

(

N

[

rD (z) − πi

2z
+

πi(j − 1/2)

z

])

q∗D(z) exp
(
vD(z; N, σ)

)
dz

+i
∑

j>0

(−1)j

∫

C−

exp

(

N

[

rD (z) − πi

2z
+

πi(j + 1/2)

z

])

q∗D(z) exp
(
vD(z; N, σ)

)
dz



+ O(eWN/2).

With (7.39), (7.40) we see the j = 0 term on C− dominates so that D2(N − 1, σ) = D3(N − 1, σ) + O(eWN/2)
for

D3(N − 1, σ) :=
−1

N3/2
Re

∫ 1.49

1.01

exp
(
−N · p(z)/2

)
iq∗D(z) exp

(
vD(z; N, σ)

)
dz (N odd). (7.42)

Thus, with the definitions (7.36) and (7.42) we have shown that for all N

D1(N, σ) = D3(N, σ) + O(eWN/2). (7.43)

7.4 The asymptotic behavior of D1(N, σ)

Recall (7.32) and for j ∈ Z>0 put

uD,σ,j(z) :=
∑

m1+3m2+5m3+···=j

(πiσz + gD,1(z))m1

m1!

gD,2(z)m2

m2!
· · · gD,j(z)mj

mj !
,

with uD,σ,0 = 1. The proof of the next proposition is similar to Proposition 5.13’s and uses Corollary 7.4.

Proposition 7.7. For 1.01 6 Re(z) 6 1.49 and |Im(z)| 6 1, say, there is a holomorphic function ζD,d(z; N, σ) of z
so that

exp
(
vD(z; N, σ)

)
=

d−1∑

j=0

uD,σ,j(z)

N j
+ ζD,d(z; N, σ) for ζD,d(z; N, σ) = O

(
1

Nd

)

with an implied constant depending only on σ and d where 1 6 d 6 2L∗ − 1 and L∗ = ⌊0.006πe · N/2⌋.
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We restate Theorem 1.6 here. Recall that z0 = 1 + log(1 − w0)/(2πi) where w0 is the dilogarithm zero
w(0,−1).

Theorem 1.6. Let N denote N mod 2. With

d0

(
N
)

= z0

√

2e−πiz0

(
e−πiz0 + (−1)N

)
(7.44)

and explicit d1

(
σ, N

)
, d2

(
σ, N

)
, . . . depending on σ ∈ R and N , we have

D1(N, σ) = Re

[

w
−N/2
0

N2

(

d0

(
N
)

+
d1

(
σ, N

)

N
+ · · · + dm−1

(
σ, N

)

Nm−1

)]

+ O

( |w0|−N/2

Nm+2

)

(7.45)

for an implied constant depending only on σ and m.

Proof. Let v = Im(z0)/Re(z0) ≈ 0.216279 and c = 1 + iv. We replace the path of integration [1.01, 1.49] in
(7.36) and (7.42) with the path P through z0 made up of the lines joining 1.01, 1.01c, 1.49c and 1.49. This
path is used in [O’S, Sect. 5.2] and it is proved there that Re(p(z) − p(z0)) > 0 for z ∈ P except at z = z0.

For N odd, applying the saddle-point method to (7.36), as in Theorem 5.14, gives

D3(N, σ) = Re

[

e−Np(z0)/2
d−2∑

t=0

−2

N t+2

t∑

s=0

Γ(s + 1/2)a2s(qD · uD,σ,t−s)

]

+ O

( |w0|−N/2

Nd+1

)

.

Therefore we set

dt

(
σ, N

)
:= −2

t∑

s=0

Γ(s + 1/2)a2s(qD · uD,σ,t−s) (N odd). (7.46)

Since
√

w0 = ep(z0)/2 and (7.43) is true, we obtain (7.45) in the statement of the theorem in this odd case.
For N even, (7.42) implies

D3(N, σ) =
−1

(N + 1)3/2
Re

∫ 1.49

1.01

exp
(
−(N + 1) · p(z)/2

)
iq∗D(z) exp

(
vD(z; N + 1, σ)

)
dz (N even)

and applying the saddle-point method yields

D3(N, σ) = Re

[

e−(N+1)p(z0)/2
d−2∑

t=0

−2

(N + 1)t+2

t∑

s=0

Γ(s + 1/2)a2s(iq
∗
D · uD,σ,t−s)

]

+ O

( |w0|−N/2

Nd+1

)

.

Define

d∗t (σ) := −2e−p(z0)/2
t∑

s=0

Γ(s + 1/2)a2s(iq
∗
D · uD,σ,t−s) (7.47)

and we want to convert the above series in 1/(N + 1) to one in 1/N . The method to do this is given in the
proof of Theorem 6.7. Let

dt

(
σ, N

)
:=

t∑

j=0

(−1)t−j

(
t + 1

j + 1

)

d∗j (σ) (N even) (7.48)

and with (7.43) we obtain (7.45) in the statement of the theorem in this even case.
To calculate d0

(
σ, N

)
, we begin with N odd and see from (7.46) and (1.29) that

d0

(
σ, N

)
= −2

√
πa0(qD · 1) = −2

√
π

ω

2(ω2p0/2)1/2
q0

for q0 = qD(z0), p0 = p′′(z0)/2 and the direction ω = z0. Short computations (see (5.43)) provide

p0 =
πi

z0(1 − e−2πiz0)
, q2

0 =
−iz0e

−πiz0

e−πiz0 + 1
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so that
d0

(
σ, N

)2
= 2z2

0e
−πiz0

(
e−πiz0 − 1

)
(N odd)

and (7.44) follows in this case. The N even case is similar: from (7.47), (7.48) and (1.29)

d0

(
σ, N

)
= −2e−p(z0)/2√πa0(iq

∗
D · 1) = −2w

−1/2
0

√
π

ω

2(ω2p0/2)1/2
iq∗0

for q∗0 = q∗D(z0). We see that (q∗0)2 = iz0(e
πiz0 + 1) and so

d0

(
σ, N

)2
= 2z2

0e
−πiz0

(
e−πiz0 + 1

)
(N even)

and (7.44) follows in this case also.

Table 3 gives an example of the accuracy of (7.45) in Theorem 1.6.

N m = 1 m = 2 m = 3 m = 4 D1(N, 1)
1000 −1.7713× 109 −1.7785× 109 −1.7778× 109 −1.77778× 109 −1.77778× 109

1001 −2.10996× 109 −2.11483× 109 −2.1142× 109 −2.11418× 109 −2.11418× 109

Table 3: Theorem 1.6’s approximations to D1(N, 1).

8 The sum E1(N, σ)

In this section we find the asymptotic expansion of

E1(N, σ) :=
∑

h/k∈E(N)

Qhkσ(N) = 2Re
∑

N
3

<k6 N
2

Q1kσ(N).

8.1 Higher-order poles

Recall from (1.5) that

Qhkσ(N) := 2πi Res
z=h/k

e2πiσz

(1 − e2πiz)(1 − e2πi2z) · · · (1 − e2πiNz)

and the expression on the right above has a pole at z = h/k of order s = ⌊N/k⌋. We calculated Qhkσ(N)
in the case of a simple pole (s = 1 or equivalently N/2 < k 6 N ) in Proposition 4.4 and require the double
pole case (s = 2 or N/3 < k 6 N/2) in this section. In general, we have

e2πiσz = e2πiσh/k
∞∑

r=0

(2πiσ)r

r!
(z − h/k)r

and for m ∈ Z6=0 write

1

1 − e2πimz
=

∞∑

r=0

βr(m, h/k)

r!
(z − h/k)r ×

{

(z − h/k)−1 if k | m

1 if k ∤ m.

Therefore, for any k,

Qhkσ(N) = 2πi · e2πiσh/k
∑

r0+r1+···+rN=s−1

(2πiσ)r0
βr1

(1, h/k)βr2
(2, h/k) · · ·βrN (N, h/k)

r0!r1! · · · rN !
(8.1)

where

βr(m, h/k) = −(2πim)r−1Br (k | m),

βr(m, h/k) =
dr

dzr

1

1 − e2πimz

∣
∣
∣
∣
z=h/k

(k ∤ m). (8.2)
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Formula (8.2) implies for example,

β0(m, h/k) =
1

1 − e2πimh/k

β1(m, h/k) = −2πimβ0(m, h/k)
(

1 − β0(m, h/k)
)

β2(m, h/k) = (2πim)2β0(m, h/k)
(

1 − 3β0(m, h/k) + 2β0(m, h/k)2
)

for k ∤ m.

8.2 Second-order poles

For N/3 < k 6 N/2 (and s = 2), formula (8.1) shows that

Qhkσ(N) = 2πi · e2πiσh/k

[

2πiσ +
β1(1, h/k)

β0(1, h/k)
+ · · · + β1(N, h/k)

β0(N, h/k)

] N∏

j=1

β0(j, h/k)

and hence, recalling the root of unity identity after (3.12),

Qhkσ(N) =
−e2πiσh/k

2k4




N(N + 1) − 3k − 2σ

2
−

∑

16m6N, k∤m

m

1 − e2πimh/k





N−2k∏

j=1

1

1 − e2πihj/k
.

For the case we need, h = 1,

∑

16m6N, k∤m

m

e2πim/k − 1
=

∑

16m6N, k∤m

m · e−πim/k

eπim/k − e−πim/k

=
1

2i

∑

16m6N, k∤m

m(cos(−πm/k) + i sin(−πm/k))

sin(πm/k)

=
−1

2i

∑

16m6N, k∤m

im +
1

2i

∑

16m6N, k∤m

m cot(πm/k).

Therefore

Q1kσ(N) =
1

2k2
φ(N, k, σ) exp

(

N

[−iπ

2

(
N

k
− 1 + 2

k

N

)])

exp

(−iπ

2

N

k

)

exp

(
1

N

[

2iπσ
N

k

])
∏−1

N−2k(1/k)

(8.3)
for

φ(N, k, σ) :=
1

4k2
(N2 + N − 4σ) +

1

2πik

∑

16j6N, k∤j

πj

k
cot

(
πj

k

)

. (8.4)

Also note that

|Q1kσ(N)| =
1

2k2

∣
∣
∣φ(N, k, σ) · ∏−1

N−2k(1/k)
∣
∣
∣ . (8.5)

Lemma 8.1. For N/3 < k 6 N/2 and an implied constant depending only on σ

φ(N, k, σ) = O(N).

Proof. Verify that 1/| sin(πj/k)| < 2k/π for k ∤ j (as in [O’S, Sect. 3.3]). Therefore

| cot(πj/k)| < 2k/π (k ∤ j)

and the lemma follows.

Set z = z(N, k) := N/k. Applications of Propositions 4.7 and 4.10, with m = N − 2k and s = N/2, prove
the following.
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Theorem 8.2. Fix W > 0. Let ∆ be in the range 0.0048 6 ∆ 6 0.0079 and set α = ∆πe. Suppose δ and δ′ satisfy

∆

1 − ∆
< δ 6

1

e
, 0 < δ′ 6

1

e
and δ log 1/δ, δ′ log 1/δ′ 6 W.

Then for all N > 2 · R∆ we have

∏−1
N−2k(1/k) = O

(

eWN/2
)

for z ∈ [2, 2 + δ] ∪ [5/2 − δ′, 3) (8.6)

and

∏−1
N−2k(1/k) =

1

N1/2
exp

(

N
Cl2(2πz)

2πz

)(
z

2 sin(π(z − 2))

)1/2

× exp

(
L−1∑

ℓ=1

gℓ(z)

N2ℓ−1

)

+ O
(

eWN/2
)

for z ∈ (2 + δ, 5/2 − δ′) (8.7)

with L = ⌊α · N/2⌋. The implied constants in (8.6), (8.7) are absolute.

8.3 Estimating φ(N, k, σ)

With Lemma 8.1 and (8.6), we see that

E1(N, σ) = 2Re
∑

k : z∈(2+δ, 5/2−δ′)

Q1kσ(N) + O(NeWN/2) (8.8)

and so we may restrict our attention to indices k corresponding to this range. Let

f(x) := x cot(x),

a smooth function of x ∈ R except at x = ±π,±2π . . . and with f(0) = 1. Note the identities

f(−x) = f(x), f(π + x) = f(x) + π cot(x), f(π − x) = f(x) − π cot(x)

for example. Let m = N − 2k as before, so that 0 6 m < k. With (8.8) we may assume

δk < m < k/2 − δ′k,

and in particular, m 6= 0. For m < k/2, the sum we need from (8.4) is

∑

16j6N, k∤j

f

(
πj

k

)

=
∑

m<j<k−m

(

f

(
πj

k

)

+ f

(
π(k + j)

k

))

+
∑

16j6m

(

f

(
πj

k

)

+ f

(
π(k − j)

k

)

+ f

(
π(k + j)

k

)

+ f

(
π(2k − j)

k

)

+ f

(
π(2k + j)

k

))

= 5
∑

16j6m

f

(
πj

k

)

+ 2
∑

m<j<k−m

f

(
πj

k

)

. (8.9)

With ρ(z) := log
(
(sin z)/z

)
, we have

f(x) = 1 + xρ′(x)

and for d ∈ Z>1

f (d)(x) = x cot(d)(x) + d cot(d−1)(x) (8.10)

= xρ(d+1)(x) + dρ(d)(x). (8.11)

Since ρ(d)(0) equals 0 for d odd, (and equals −2d|Bd|/d for d even), we see

f (d)(0) = 0 (d odd). (8.12)
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Also note the relation
f (d)(π − x) = (−1)d

(

f (d)(x) − π cot(d)(x)
)

. (8.13)

Applying Euler-Maclaurin summation to (8.9), as in [Rad73, Chap. 2] or [Olv74, p. 285], and simplifying
with (8.12), (8.13) produces

∑

16j6N, k∤j

f

(
πj

k

)

= 5

∫ m

0

f
(πx

k

)

dx + 2

∫ k−m

m

f
(πx

k

)

dx − 5

2
+

1

2
f
(πm

k

)

+ π cot
(πm

k

)

+

L−1∑

ℓ=1

B2ℓ

(2ℓ)!

(π

k

)2ℓ−1 {

f (2ℓ−1)
(πm

k

)

+ 2π cot(2ℓ−1)
(πm

k

)}

+ εL(m, 1/k) (8.14)

for

εL(m, 1/k) :=
(π

k

)2L
[

5

∫ m

0

+2

∫ k−m

m

]

B2L − B2L(x − ⌊x⌋)
(2L)!

f (2L)
(πx

k

)

dx. (8.15)

With the evaluation ∫ t

0

x cot(x) dx =
1

2
Cl2(2t) − t Cl′2(2t)

we find

5

∫ m

0

f
(πx

k

)

dx + 2

∫ k−m

m

f
(πx

k

)

dx =
k

2π
Cl2(2πm/k) − N Cl′2(2πm/k).

Using (8.10) also, (8.14) becomes

∑

16j6N, k∤j

f

(
πj

k

)

=
k

2π
Cl2(2πm/k) − N Cl′2(2πm/k) − 5

2
+

πN

2k
cot
(πm

k

)

+

L−1∑

ℓ=1

B2ℓ

(2ℓ)!

(π

k

)2ℓ−1
{

πN

k
cot(2ℓ−1)

(πm

k

)

+ (2ℓ − 1) cot(2ℓ−2)
(πm

k

)}

+ εL(m, 1/k). (8.16)

Define

g̃ℓ(z) :=
B2ℓ

(2ℓ)!
(πz)2ℓ−1

{

πz cot(2ℓ−1) (πz) + (2ℓ − 1) cot(2ℓ−2) (πz)
}

.

With (8.4) and (8.16) we have demonstrated that

φ(N, k, σ) =

[
Cl2(2πz)

4π2i
− z Cl′2(2πz)

2πi
+

z2

4

]

+
1

N

[
z2 cot(πz)

4i
+

z2

4
− 5z

4πi

]

− σz2

N2
+

z

2πi

L−1∑

ℓ=1

g̃ℓ(z)

N2ℓ
+

εL(m, 1/k)

2πik
(8.17)

which we write as

φ(N, k, σ) =
2L−1∑

ℓ=0

φσ,ℓ(z)

N ℓ
+

εL(m, 1/k)

2πik
,

though only φσ,2(z) depends on σ.

Proposition 8.3. For 1 6 m 6 k/2 we have

|εL(m, 1/k)|
2πk

6 2π2(2L − 1)

(
2L − 1

2πem

)2L−1

.

Proof. The arguments here are similar to those in [O’S, Sect. 3]. Use the inequalities

|B2n − B2n(x − ⌊x⌋)| 6 2|B2n|,
|B2n|
(2n)!

6
π2

3(2π)2n
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from [Olv74, Thm 1.1, p. 283] and [Rad73, (9.6)] to see that

|εL(m, 1/k)| 6
2π2

3(2π)2L

(π

k

)2L
[

5

∫ m

0

+2

∫ k−m

m

]
∣
∣
∣f (2L)

(πx

k

)∣
∣
∣ dx. (8.18)

By [Rad73, (11.1)]

−ρ′(w) =

∞∑

r=1

22r|B2r|
(2r)!

w2r−1 (|w| < π) (8.19)

so that
ρ(d)(x) 6 0 for all x ∈ [0, π), d ∈ Z>0.

Hence (8.11) implies

f (d)(x) 6 0 for all x ∈ [0, π), d ∈ Z>1

and
∣
∣f (2L) (πx/k)

∣
∣ = −f (2L) (πx/k) in (8.18). On integrating and applying (8.12), (8.13) we obtain

|εL(m, 1/k)| 6 −π

3

(
1

2k

)2L−1 (

f (2L−1)
(πm

k

)

+ 2π cot(2L−1)
(πm

k

))

=
π

3

(
1

2k

)2L−1
(

2π(2L − 1)!

(
k

πm

)2L

− πN

k
ρ(2L)

(πm

k

)

− (2L − 1)ρ(2L−1)
(πm

k

)
)

with the last line coming from (8.11) and the further identity

cot(d)(x) =
(−1)dd!

xd+1
+ ρ(d+1)(x).

Use
∣
∣
∣ρ(d+1)(x)

∣
∣
∣ 6

2πd!

3

(
2

π

)d

(|x| 6 π/2, d ∈ Z>0)

from (8.19), and (n − 1)! < 3 (n/e)
n

from Stirling’s formula, to complete the proof.

8.4 Approximating E1(N, σ)

With (4.2) for m = 2 we find, for 2 < z < 3,

Cl2(2πz)

2πz
− iπ

2
(z − 1 + 2/z) = −2πi +

1

2πiz

[

Li2(e
2πiz) − Li2(1) − 4π2

]

.

Put

rE(z) :=
1

2πiz

[

Li2(e
2πiz) − Li2(1) − 4π2

]

(8.20)

qE(z; N, σ) :=

(
z

2 sin(πz)

)1/2

exp

(−πiz

2

)

×
2L−1∑

ℓ=0

φσ,ℓ(z)

N ℓ
(8.21)

vE(z; N, σ) :=
2πiσz

N
+

L−1∑

ℓ=1

gℓ(z)

N2ℓ−1
(8.22)

for L := ⌊α · N/2⌋ in (8.21) and (8.22). Also set

E2(N, σ) :=
1

N1/2
Re

∑

k : z∈(2+δ, 5/2−δ′)

1

k2
exp
(
N · rE (z)

)
qE(z; N, σ) exp

(
vE(z; N, σ)

)
.

The terms summed for E2(N, σ) above differ from the terms in E1(N, σ) only in the removal of the error

terms from the approximations of
∏−1

N−2k(1/k) and φ(N, k, σ). The next proposition lets us control what
happens on removing the error term for φ(N, k, σ).
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Proposition 8.4. Suppose ∆ and W satisfy 0.0048 6 ∆ 6 0.0079 and ∆log 1/∆ 6 W . For the integers k, s and
m we require

1 < k 6 s, R∆ 6 s, ∆s 6 m 6 k/2.

Then for L := ⌊πe∆ · s⌋ we have

∏−1
m (1/k)

εL(m, 1/k)

2πik
= O(sesW )

εL(m, 1/k)

2πik
= O(s).

Proof. We may copy the proof of Proposition 4.8 in [O’S, Sect. 3.4]. The bound used for TL(m, h/k) in that

result is
(

2L−1
2πem

)2L−1
. The corresponding bound for εL(m, 1/k)/(2πik) in Proposition 8.3 is bigger by a factor

2L − 1 ≪ s.

Choosing s = N/2 and m = N − 2k in Proposition 8.4 shows

∏−1
N−2k(1/k)

εL(m, 1/k)

2πik
= O(NeWN/2) (8.23)

εL(m, 1/k)

2πik
= O(N) (8.24)

for N > 2 · R∆, L = ⌊α · N/2⌋ and 2 + ∆/(1 − ∆/2) 6 z 6 5/2.

Proposition 8.5. For an implied constant depending only on σ

E1(N, σ) = E2(N, σ) + O(NeWN/2).

Proof. Starting with (8.8), write

∑

k : z∈(2+δ, 5/2−δ′)

Q1kσ(N) =
∑

k : z∈(2+δ, 5/2−δ′)

Q1kσ(N)

φ(N, k, σ)

(
2L−1∑

ℓ=0

φσ,ℓ(z)

N ℓ
+

εL(m, 1/k)

2πik

)

where
Q1kσ(N)

φ(N, k, σ)
=

1

2k2
exp

(

N
−iπ(z − 1 + 2/z)

2
− πiz

2
+

2πiσz

N

)
∏−1

N−2k(1/k)

by (8.3). We have

∑

k : z∈(2+δ, 5/2−δ′)

Q1kσ(N)

φ(N, k, σ)

εL(m, 1/k)

2πik

≪
∑

k : z∈(2+δ, 5/2−δ′)

1

k2

∣
∣
∣
∣

∏−1
N−2k(1/k)

εL(m, 1/k)

2πik

∣
∣
∣
∣
≪ NeWN/2

using (8.23) and that
∆

1 − ∆/2
<

∆

1 − ∆
< δ

so the bound (8.23) is valid for z ∈ (2 + δ, 5/2 − δ′). Therefore,

E1(N, σ) = 2Re
∑

k : z∈(2+δ, 5/2−δ′)

Q1kσ(N)

φ(N, k, σ)

(
2L−1∑

ℓ=0

φσ,ℓ(z)

N ℓ

)

+ O(NeWN/2). (8.25)

Next note that ∣
∣
∣
∣
∣

2L−1∑

ℓ=0

φσ,ℓ(z)

N ℓ

∣
∣
∣
∣
∣
6 |φ(N, k, σ)| +

∣
∣
∣
∣

εL(m, 1/k)

2πik

∣
∣
∣
∣
≪ N (8.26)

by Lemma 8.1 and (8.24). With (8.26) we see that replacing
∏−1

N−2k(1/k) in (8.25) by the main term on the

right of (8.7) changes E1(N, σ) by at most O(NeWN/2), as required.
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Comparing (8.20)-(8.22) and (5.9)-(5.11) gives the relations

rE(z) = rC(z), qE(z; N, σ) = qC(z)

2L−1∑

ℓ=0

φσ,ℓ(z)

N ℓ
, vE(z; N, σ) = vC(z; N, σ)

so that we may reuse our work from Section 5.

Lemma 8.6. The function qE(z; N, σ) is holomorphic for 2 < Re(z) < 5/2. In the box with 2+δ 6 Re(z) 6 5/2−δ′

and −1 6 Im(z) 6 1,
qE(z; N, σ) ≪ 1 (8.27)

for an implied constant depending only on σ ∈ R.

Proof. The only issue is that φσ,0(z) has only been defined in (8.17) for z ∈ R. Use (4.2) and its derivative
with m = 2 to show

φσ,0(z) =
1

4π2

[
Li2(1) − Li2(e

2πiz) + 6π2 − 2πiz log(1 − e2πiz)
]

(8.28)

giving the analytic continuation of φσ,0(z) to all z with 2 < Re(z) < 5/2.

With the rectangle C1 from Figure 4 we find

E2(N, σ) =
−1

N3/2
Re

∫

C1

exp
(
N · rC(z)

) qE(z; N, σ)

2i tan
(
πN/z

) exp
(
vC(z; N, σ)

)
dz

where
1

2i tan(πN/z)
=

{

1/2 +
∑

j6−1 e2πijN/z if Imz > 0

−1/2−∑j>1 e2πijN/z if Imz < 0.

The arguments of Propositions 5.5, 5.6 and 5.7 now go through almost unchanged:

E2(N, σ) =
−1

N3/2
Re




∑′

j60

∫

C+

1

exp
(
N [rC(z) + 2πij/z]

)
qE(z; N, σ) exp

(
vC(z; N, σ)

)
dz

−
∑′

j>0

∫

C−

1

exp
(
N [rC(z) + 2πij/z]

)
qE(z; N, σ) exp

(
vC(z; N, σ)

)
dz



+ O(eWN/2),

the term with j = −1 is the largest and

E2(N, σ) = E3(N, σ) + O(eWN/2) (8.29)

for W = 0.05, an implied constant depending only on σ, and

E3(N, σ) :=
1

N3/2
Re

∫ 2.49

2.01

exp
(
−N · p(z)

)
qE(z; N, σ) exp

(
vC(z; N, σ)

)
dz. (8.30)

8.5 The asymptotic behavior of E1(N, σ)

Similar proofs to those of Proposition 5.2 and Corollary 5.3 give:

Proposition 8.7. For 2.01 6 Re(z) 6 2.49 and |Im(z)| 6 1, say, there is a holomorphic function ξr(z; N, σ) of z so
that

qE(z; N, σ) = qC(z)

r−1∑

k=0

φσ,k(z)

Nk
+ ξr(z; N, σ) for ξr(z; N, σ) = O

(
1

N r

)

with an implied constant depending only on σ and r where 1 6 r 6 2L − 1 and L = ⌊0.006πe · N/2⌋.

We restate Theorem 1.7:
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Theorem 1.7. With e0 = −3z1e
−πiz1/2 and explicit e1(σ), e2(σ), . . . depending on σ ∈ R we have

E1(N, σ) = Re

[
w(0,−2)−N

N2

(

e0 +
e1(σ)

N
+ · · · + em−1(σ)

Nm−1

)]

+ O

( |w(0,−2)|−N

Nm+2

)

(8.31)

for an implied constant depending only on σ and m.

Proof. With Propositions 5.13 and 8.7, write

qE(z; N, σ) exp
(
vC(z; N, σ)

)
= qC(z)

(
r−1∑

k=0

φσ,k(z)

Nk

)



d−1∑

j=0

uσ,j(z)

N j





+ qE(z; N, σ)ζd(z; N, σ) + ξr(z; N, σ) exp
(
vC(z; N, σ)

)
− ξr(z; N, σ)ζd(z; N, σ).

Then putting this into (8.30) and moving the line of integration to Q gives

E3(N, σ) =
1

N3/2
Re

∫

Q
exp
(
−N · p(z)

)
qC(z)

(
r−1∑

k=0

φσ,k(z)

Nk

)



d−1∑

j=0

uσ,j(z)

N j



 dz

+ O

( |w(0,−2)|−N

N3/2

(
1

Nd
+

1

N r
+

1

Nd+r

))

. (8.32)

The integral in (8.32) is

r−1∑

k=0

d−1∑

j=0

1

N3/2+k+j

∫

Q
exp
(
−N · p(z)

)
qC(z)φσ,k(z)uσ,j(z) dz

and applying the saddle-point method, Theorem 1.8, gives

r−1∑

k=0

d−1∑

j=0

2e−N ·p(z1)

N3/2+k+j

(
S−1∑

s=0

Γ(s + 1/2)
a2s(qC · φσ,k · uσ,j)

Ns+1/2
+ O

(
1

NS+1/2

))

.

Letting S = r = d we obtain, as in the proof of Theorem 5.14,

E3(N, σ) = Re

[

e−N ·p(z1)
d−2∑

t=0

2

N t+2

t∑

s=0

t−s∑

k=0

Γ(s + 1/2)a2s(qC · φσ,k · uσ,t−s−k)

]

+ O

( |w(0,−2)|−N

Nd+1

)

. (8.33)

Hence, recalling Proposition 8.5, (8.29) and with

et(σ) := 2

t∑

s=0

t−s∑

k=0

Γ(s + 1/2)a2s(qC · φσ,k · uσ,t−s−k), (8.34)

we obtain (8.31) in the statement of the theorem.
Computing e0(σ) with (8.34) gives

e0(σ) = 2
√

πa0(qC · φσ,0 · 1) = 2
√

π
ω

2(ω2p0)1/2
qC(z1)φσ,0(z1).

With the identity
2πiz2p′(z) = Li2

(
e2πiz

)
− Li2(1) + 2πiz log

(
1 − e2πiz

)

from [O’S, Sect. 2.3] we find that

φσ,0(z1) =
6π2 − 2πiz2

1p
′(z1)

4π2
=

3

2
.

Combine this with the calculations in (5.44) to get e0(σ)2 = 9z2
1e

−2πiz1/4 and the formula for e0 = e0(σ) in
the statement of the theorem follows.
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N m = 1 m = 2 m = 3 m = 4 E1(N, 1)
800 879.611 905.272 909.048 909.358 909.337
1000 −789369. −784383. −784458. −784480. −784480.

Table 4: Theorem 1.7’s approximations to E1(N, 1).

For example, a comparison of both sides of (8.31) in Theorem 1.7 with σ = 1 and some different values
of m and N is shown in Table 4.

Proof of Theorem 1.3. Recall the sets B(K, N), C(N), D(N) and E(N) from (3.33), (1.13), (1.14) and (1.15)
respectively. Then

FN −
(
F100 ∪ A(N)

)
= B(101, N)∪ C(N) ∪D(N) ∪ E(N).

Summing Qhkσ(N) for h/k ∈ B(101, N) is O(eWN ) for any W > Cl2(π/3)/(6π) ≈ 0.0538 by Theorem 3.5.
Since

− log |w(1,−3)| ≈ 0.0356795, − log |w(0,−1)|/2 ≈ 0.0340381, − log |w(0,−2)| ≈ 0.0256706

we see from Theorems 1.5, 1.6 and 1.7 that the sums of Qhkσ(N) for h/k ∈ C(N), D(N) and E(N) are
O(e0.0357N ), O(e0.0341N ) and O(e0.0257N ) respectively. This completes the proof.

As a final remark, comparing Tables 4 and 1 we notice that E1(N, 1) is almost exactly 3 times the size
of C2(N, 1) and that their asymptotic expansions also seem to match. This is true for other values of σ too.
From Theorems 5.14 and 1.7 we have

3 · ct(σ) = et(σ) (8.35)

for the first expansion coefficients at t = 0. Numerically, (8.35) seems to be true for all t, as we mentioned
before in (1.24).
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