Please use lots of space and explain your answers, showing clearly any work you had to do. Each question is worth 3 points for a total of 21.

- (1) Let *A* be the set of all even integers from 10 to 800. Describe this set using set builder notation.
- (2) Let *D* be the set {7,8,9,{10,11}}. Decide if these statements are true, false or don't make sense. (Do this one carefully!)
 - (a) $7 \in D$
 - **(b)** |D| = 4
 - (c) $\phi \subseteq D$
 - (d) 10 ∈ D
 - (e) $\{7, \{10, 11\}\} \subset D$
- (3) Let $B = \{0, 2, 8\}$. Find the power set P(B).

(Hint: this power set should have 8 elements.)

- (4) Let $B = \{0, 2, 8\}$ and $C = \{4, 5\}$. Find these Cartesian products:
 - (a) $C \times B$
 - (b) $C \times C$

(Use the brace, parenthesis, comma notation correctly. The elements of the Cartesian products should be ordered pairs.)

(5) Let $A = \{3, 4, 5, 6\}$ and $B = \{5, 6, 7\}$. Find

- (a) $A \cup B$
- (b) $A \cap B$
- (c) A B
- (d) B A
- (e) $A \oplus B$
- (6) For any two sets *A* and *B* do you think it's true that

 $(A \cup B) - (A \cap B) = A \oplus B?$

Use Venn diagrams to explain your answer.

- (7) Let the universal set U be $\{0, 1, 2, 3, 4, 5, 6, 7\}$.
 - (a) Represent the set $S = \{0, 3, 4, 6\}$ using a bit string.
 - (b) Represent the set \overline{S} using a bit string. (This means the complement of *S*.)
 - (c) What sets do the bit strings 00000000 and 11111111 represent here?

(Remember that for this question 1 means 'in' and 0 means 'not in'.)

If you get stuck on a question or aren't sure if you understand it:

- Go over the relevant class notes and section in the textbook.
- Check if you get the right answer for a similar odd-numbered question in the textbook (answers at the back of the book).
- Ask me about it after class.
- Come to my office hours: Tue 3 4, Wed 3 4 in CP 317.
- Go to the Math Tutorial Lab in-person in CP 303 or online.