CSI 30, Homework 10 on sections 6.3, 6.4, 7.1 Due by Wed, May 10.

Please use lots of space and explain your answers, showing clearly any work you had to do. Each question is worth 3 points for a total of 33.

(1) How many permutations of 2 elements from the set $\{a, b, c, d, e\}$ are there? List them all.

(Hint: there should be P(5, 2) permutations in your list.)

- (2) Compute these permutation and combination numbers, showing your work:
 - (a) P(6,3)
 - **(b)** P(5,5)
 - (c) C(5,5)
 - (d) C(8,4)
 - (e) C(6,0)

(Hint: use the formulas

$$P(n,r) = \frac{n!}{(n-r)!}, \qquad C(n,r) = \frac{n!}{(n-r)!r!}$$

and there is always lots of cancellation.)

- (3) Suppose there is a group of 8 people.
 - (a) How many different teams of 4 can be chosen from this group?
 - (b) How many ways can a photographer select and arrange 4 people from this group to stand in a line?
- (4) (a) How many subsets of size 3 does a set with 20 elements have?(b) How many bit strings of length 20 have exactly 17 ones?
- (5) Use the binomial theorem to expand $(x+3)^6$
- (6) If we have the numbers

 $1 \quad 8 \quad 28 \quad 56 \quad 70 \quad 56 \quad 28 \quad 8 \quad 1$

on a row of Pascal's triangle, use Pascal's identity to find the next row.

(7) Work out these three questions directly or by using the binomial theorem. (It's a lot less work if you use the binomial theorem!)

(b) Find:
$$\binom{0}{0} + \binom{1}{1} + \binom{2}{2} + \binom{3}{3} + \binom{4}{4} + \binom{5}{5} + \binom{6}{6} + \binom{7}{7} + \binom{8}{8}$$

(c) Find: $\binom{8}{0} + 2\binom{8}{1} + 4\binom{8}{2} + 8\binom{8}{3} + 16\binom{8}{4} + 32\binom{8}{5} + 64\binom{8}{6} + 128\binom{8}{7} + 256\binom{8}{8}$

- (8) You pick a random card from a standard deck. Find the probability
 - (a) that it is the ace of clubs,
 - (b) that it is a king,
 - (c) that it is a ten or a club.
 - (d) Which of (a), (b), (c) is least likely to happen?
- (9) Roll two dice.
 - (a) Find the probability that their sum is 8.
 - (b) Find the probability that their sum is not 8.
- (10) Show that the probability of a 5-card poker hand containing exactly one heart is 41.1%.
- (11) (a) A lottery uses the numbers 1 to 51 and picks 6 of these at random. You must match 6 numbers, in any order, to win. Find the probability of your six chosen numbers matching and you winning the lottery.
 - (b) If you toss a coin 24 times, what is the probability of getting tails every time?
 - (c) Which of (a), (b) is most likely to happen?

If you get stuck on a question or aren't sure if you understand it:

- Go over the relevant class notes and section in the textbook.
- Check if you get the right answer for a similar odd-numbered question in the textbook (answers at the back of the book).
- Ask me about it after class.
- Come to my office hours: Tue 3 4, Wed 3 4 in CP 317.
- Go to the Math Tutorial Lab in-person in CP 303 or online.