Math 35 Review Sheet, Spring 2014

For the final exam, do any 12 of the 15 questions in 3 hours. They are worth 8 points
each, making 96, with 4 more points for neatness! Put all your work and answers in the
provided booklets. To get all 8 points for a question it is very important that you show
clearly all your working out and reasoning.

Main Topics:

e Types of derivatives. Let f be a function from Euclidean n-space to Euclidean m-
space, ie f : R* — R™. For x = (21, %9, ..., x,) We can write

fx) = (i(x), f2(x), .-, fn(x)).

(a) Then the derivative of f is an m x n matrix
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(b) For the case m = n, the Jacobian of f at x is det D f(x). Other notations for the
Jacobian are
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(¢) Form = 1wehave f : R” — R and the derivative becomes a 1 x n matrix. This
vector is called the gradient:

_(9f 9Of of
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e Lagrange multipliers. Let f : R® — R and ¢ : R” — R have continuous partial
derivatives. To find the maximum and minimum values of f(x) subject to the con-
straint g(x) = k, solve the system

<
=
X

I

AVg(x)
g(x) = k.

e Inverse Function Theorem. Suppose g : R™ — R™ has continuous partial deriva-
tives. If g(yo) = to and the Jacobian of g at yy is not zero then ¢ has an inverse near
yo. This means there is a function h : R™ — R™ so that all solutions to

g(y) =t with y near yo and t near t,

are given by y = h(t).



e Riemann Sums. Double integrals [[, f(z,y)dA and tripleintegrals [[[, f(x,y,z)dV
are defined as the limits of double and triple Riemann sums.

e Double integrals.

(a) Fubini’s Theorem tells us that, if f is continuous, a double integral [/ p flz,y)dA
over a rectangle D = [a,b] X [¢,d] can be evaluated as the iterated integral

’ df(x,y)dydx or ' bf(x,y)dxdy.
v /]

(b) For more complicated type I regions we use f )) f(z,y) dydx and for type

II regions we use f f,? 2((5) f(x,y) dzdy.

(c) For a circular region R we change from rectangular coordinates (x,y) to polar
(r,0) with

xr =rcosb, Yy = 7rsind,

If (x,y) € R corresponds to (r,6) € S then

B : d(x,y) B :
//Rf(q:,y)d:cdy— /Sf(rcosﬁ,'r’sme)’a(he) ‘ drdﬁ—/Sf('r’cose,rsmﬁ)rdrde.

e Triple integrals.

(a) Fubini’s Theorem tells us that, if f is continuous, a triple integral [ [/, f(z,y,z)dV
over abox B = [a,b] X [c,d] x [r,s] canbe evaluated as the iterated integral

[ [ ] s deavie

or in any other order of integration.

(b) A type 1 solid region E is one that lies between two graphs u; (z, y) and us(z, y)
with (z,y) € D. Then

[ s = [ [ oo

and similarly for the other axes x and y.

dA

(c) For a cylindrical solid region E we change from rectangular coordinates (z, y, 2)
to cylindrical (r, 6, z) with

x =rcosb, Yy = 7rsind, z=z.

with obvious variants if the cylindrical axis is in the z or y direction.

(d) For a spherical solid region E we change to spherical coordinates (p, 6, ¢) with

o(z,y,2)

2
Apr0.0) 7O

x = psingcosf, y=psingsinf, z= pcosao,



If (x,y,2) € E corresponds to (p, 0, ¢) € S then

// flz,y, 2 dxdydz-// f(psingcosf, psin psinb, pcos¢)’ E 9¢§ dpdfdeo

:// f(psin ¢ cos B, psin ¢sin b, p cos ¢)p? sin ¢ dpdfdep.
S

e Vector Fields.

(a) A vector field F assigns a vector to each point in space. For example F(z,y) =
2i+ xyj is a 2-dimensional field and F(x, y, 2) = 2% — 3j+y/zk is 3-dimensional.

(b) If f(x,y,2) is a function then its gradient vector field is
0
Vfilr,y,z)==—i+—j+ =k
T 2

and a vector field F is conservative it F = V f for some f (its potential function).

(c) For a vector field F = Pi + Qj + Rk, we define the new vector field

i j k
curlF:VxF:a% a% %
P Q R

and the divergence (a function) divF =V - F = &c E 2 En Q1 ‘9R.
e Space curves. Let C be a space curve, parameterized by
r(t) = (x(t),y(t), 2(t))  a<t<h
The unit (length) tangent vector T at a point r(¢) on C'is given by
/

t
T = o)
' (t)]
For example the circle of radius a, centered at the origin in the zy-plane with positive

(counter-clockwise) orientation can be parameterized by

for r'(t) = (2/(t),y'(t), 2 ().

r(t) = (acost,asint), 0<t<2m.
For another example, the line segment from r to r; may be parameterized by

r(t) = (1 —t)ro + try, 0<t< L.

e Line Integrals. Let C' be a space curve as above.

(@) The line integral of a function f along C'is

/fds-/ f(r ()| dt.

(b) The line integral of a function f along C w.r.t. x is

/Cfdx:/abf(r(t))x b dt

and similarly w.r.t. y and 2.



(c) The line integral of a vector field F along C' is

/CF dr = /abF(r(t)) -1r'(t) dt.

Note the relations

/CF-Tds:/ F(x(t)) - T(8)[x' (1)] dt
_/ F(r(t)) - r'(t) dt

:/F-dr
c

/F-dr—/Pdm+Qdy+Rdz for F = Pi+ Qj+ Rk.
c c

and

Fundamental Theorem for Line Integrals. For C' a smooth curve (parameterized as
above) and f with continuous partial derivatives then

/C Vf-dr = f(x(8)) - f(x(a)).

It follows from this theorem that integrals of conservative vector fields are indepen-
dent of the path taken between the endpoints. It also follows that the integral of a
conservative field around a closed curve is zero.

Tests for when a vector field is conservative. We can use the following tests. For
a 2-dimensional field F(z,y) = Pi + Qj with continuous partial derivatives on a
domain (z,y) € D then

P
F conservative — 8— = @ on D,
Jdy  Ox
orP 0
i 8_Q on D (D open, simply connected) = F conservative.
Yy T

For a 3-dimensional field F with continuous partial derivatives on a domain D then

F conservative —> curl F =0 on D,
curl F =0on D = R® = F conservative.

For example, if you compute curl F and find it is not zero, then F is not conservative.
Another way to prove a field is conservative is to try to partially integrate it w.r.t. z,
y (and z) to find the potential function f.

Parametric Surfaces. Let S be a surface, parameterized by
r(u,0) = (0(u,0), y(u,0), 2(w,0)  (uw,0) € D,

The tangent vectors to the surface at the point r(u, v) are

or. Oy. 0z
r, %I‘F%J"—%k,
r, = 8—x1—|—@j—|— %k



This gives a normal vector r,, x r, to the surface at the point r(u, v) and the equation
of the tangent plane to the surface there is

((z,y,2) —r(u,v)) - (ry, xr,) =0.

We can define the unit normal to S to be

T, X,
v, X 1,|

Changing the sign of n gives the opposite direction for the normal. A surface S is
called orientable if you can choose the normal n so that it varies continuously over S.
(For example, the Mdobius strip is not orientable, but a sphere is.) Every orientable
surface has two possible orientations.

e Surface Integrals. Let S be a surface parameterized as above.

(@) The surface integral of a function f over S is

//Sfdsz //Df(rwv))lru x 1| dA.

(b) The surface integral of a vector field ¥ over an oriented surface S is

// -dS = i// (ry X r,)dA

with the sign depending on the choice of orientation. Note the relation

//F ndS = // |ru><rv‘|ru><rv]dz4
ry, X
// (r, xr,)dA
— [[®-as
S

and this surface integral is also called the flux of F across S.

e When the surface S is a graph. A nice case is when a surface S is given by the set
of points (x,y, z) where (z,y) € D and z = g(x,y). We give this surface the upward
orientation. Let F = Pi+ Qj + Rk be a vector field. You should know how to derive

the useful formula
[[¥0s- //( P2 +R)d,4.
y

e Green’s Theorem. Let C' be a positively oriented, piecewise-smooth, simple closed
curve in the zy-plane with D the region bounded by C. If P and ) have continuous
partial derivatives on an open region containing D then

/CdeJery://D(g—Cj—g—];) dA.



Stokes’ Theorem. Let S be an oriented piecewise-smooth surface that is bounded by
a simple, closed, piecewise-smooth boundary curve C' with positive orientation. Let
F be a vector field with continuous partial derivatives on an open region containing

S then
/F-dr—//curlF-dS.
c s

The Divergence Theorem. Let ' be a simple solid region and let S be the boundary
surface of E with the outward orientation. Let F be a vector field with continuous
partial derivatives on an open region containing £ then

J[Fas=[[[ aivrav

Theorems. You should know how to state precisely and apply the following theo-
rems:

(i) The Inverse Function Theorem
(i) Fubini’s Theorem
(iii) The Fundamental Theorem for Line Integrals
(iv) Green’s Theorem
(v) Stokes’ Theorem

(vi) The Divergence Theorem

Measurement. A nice application of our work is to compute lengths, areas and
volumes.

/ 1 ds = length of curve C

c

/ / 1dA = area of flat surface D
D

/ / 1dS = area of surface S
S

/ / / 1dV = volume of solid B.
B

We also saw how to compute the area of D using a line integral: choose P and () so

that %—g — a—]; = 1, for example () = x and P = 0, then by Green’s Theorem

B)
area of flat surface D = // 1dA = ]{ x dy.
D oD

Center of mass. Another application is to find the mass m and center of mass (7, y)
of an object with possibly varying density.

(a) Let a thin wire with linear density p(x, y) at each point be shaped like the curve
C'in the zy-plane. Then

1 1
m:/p(x,y)ds, f:—/fﬁp(ﬂf,y>d8, y:—/yp(l‘7y)d8
c mJc mJc



(b) Let D be a lamina (thin flat shape) in the zy-plane with p(x,y) giving the mass
per area at each point. Then

mz//Dp(x,y)dA, fz%//l)xp(wjy)dfh ?z%//l)yp(wjy)dfl-

(c) Let a thin sheet be curved like the parametric surface S with p(z,y, z) giving
the mass per area at each point. Then

m://sp(x,y,z)ds

and the center of mass (7, 7, Z) is found by

1 1 1
T:—//I'p([)’},y,Z)dS, y:—//yp(fL',y,Z)dS, E:—//zp(x,y,z)ds
m g m S m S



