
Math 35 Review Sheet, Spring 2014

For the final exam, do any 12 of the 15 questions in 3 hours. They are worth 8 points
each, making 96, with 4 more points for neatness! Put all your work and answers in the
provided booklets. To get all 8 points for a question it is very important that you show
clearly all your working out and reasoning.

Main Topics:

• Types of derivatives. Let f be a function from Euclidean n-space to Euclidean m-
space, ie f : Rn → Rm. For x = (x1, x2, . . . , xn) we can write

f(x) = (f1(x), f2(x), . . . , fm(x)).

(a) Then the derivative of f is an m× n matrix

Df(x) =
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(b) For the case m = n, the Jacobian of f at x is detDf(x). Other notations for the
Jacobian are

∂(f1, f2, · · · , fm)

∂(x1, x2, · · · , xm)
and
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(c) For m = 1 we have f : Rn → R and the derivative becomes a 1× n matrix. This

vector is called the gradient:

∇f(x) =

(
∂f

∂x1

,
∂f

∂x2

, · · · , ∂f
∂xn

)
.

• Lagrange multipliers. Let f : Rn → R and g : Rn → R have continuous partial
derivatives. To find the maximum and minimum values of f(x) subject to the con-
straint g(x) = k, solve the system

∇f(x) = λ∇g(x)

g(x) = k.

• Inverse Function Theorem. Suppose g : Rm → Rm has continuous partial deriva-
tives. If g(y0) = t0 and the Jacobian of g at y0 is not zero then g has an inverse near
y0. This means there is a function h : Rm → Rm so that all solutions to

g(y) = t with y near y0 and t near t0

are given by y = h(t).



• Riemann Sums. Double integrals
∫∫

D
f(x, y) dA and triple integrals

∫∫∫
B
f(x, y, z) dV

are defined as the limits of double and triple Riemann sums.

• Double integrals.

(a) Fubini’s Theorem tells us that, if f is continuous, a double integral
∫∫

D
f(x, y) dA

over a rectangle D = [a, b]× [c, d] can be evaluated as the iterated integral∫ b

a

∫ d

c

f(x, y) dydx or
∫ d

c

∫ b

a

f(x, y) dxdy.

(b) For more complicated type I regions we use
∫ b

a

∫ g2(x)

g1(x)
f(x, y) dydx and for type

II regions we use
∫ d

c

∫ h2(y)

h1(y)
f(x, y) dxdy.

(c) For a circular region R we change from rectangular coordinates (x, y) to polar
(r, θ) with

x = r cos θ, y = r sin θ,
∂(x, y)

∂(r, θ)
= r.

If (x, y) ∈ R corresponds to (r, θ) ∈ S then∫∫
R

f(x, y) dxdy =

∫∫
S

f(r cos θ, r sin θ)

∣∣∣∣∂(x, y)

∂(r, θ)

∣∣∣∣ drdθ =

∫∫
S

f(r cos θ, r sin θ) rdrdθ.

• Triple integrals.

(a) Fubini’s Theorem tells us that, if f is continuous, a triple integral
∫∫∫

B
f(x, y, z) dV

over a box B = [a, b]× [c, d]× [r, s] can be evaluated as the iterated integral∫ b

a

∫ d

c

∫ s

r

f(x, y, z) dzdydx

or in any other order of integration.

(b) A type 1 solid region E is one that lies between two graphs u1(x, y) and u2(x, y)
with (x, y) ∈ D. Then∫∫∫

E

f(x, y, z) dV =

∫∫
D

[∫ u2(x,y)

u1(x,y)

f(x, y, z) dz

]
dA

and similarly for the other axes x and y.

(c) For a cylindrical solid regionE we change from rectangular coordinates (x, y, z)
to cylindrical (r, θ, z) with

x = r cos θ, y = r sin θ, z = z.

with obvious variants if the cylindrical axis is in the x or y direction.

(d) For a spherical solid region E we change to spherical coordinates (ρ, θ, φ) with

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ,
∂(x, y, z)

∂(ρ, θ, φ)
= ρ2 sinφ.



If (x, y, z) ∈ E corresponds to (ρ, θ, φ) ∈ S then∫∫∫
E

f(x, y, z) dxdydz =

∫∫∫
S

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)

∣∣∣∣∂(x, y, z)

∂(ρ, θ, φ)

∣∣∣∣ dρdθdφ
=

∫∫∫
S

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφ dρdθdφ.

• Vector Fields.

(a) A vector field F assigns a vector to each point in space. For example F(x, y) =
2i+xyj is a 2-dimensional field and F(x, y, z) = z2i−3j+y/zk is 3-dimensional.

(b) If f(x, y, z) is a function then its gradient vector field is

∇f(x, y, z) =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

and a vector field F is conservative if F = ∇f for some f (its potential function).

(c) For a vector field F = P i +Qj +Rk, we define the new vector field

curl F = ∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣
and the divergence (a function) div F = ∇ · F = ∂P

∂x
+ ∂Q

∂y
+ ∂R

∂z
.

• Space curves. Let C be a space curve, parameterized by

r(t) = (x(t), y(t), z(t)) a 6 t 6 b.

The unit (length) tangent vector T at a point r(t) on C is given by

T(t) =
r′(t)

|r′(t)|
for r′(t) = (x′(t), y′(t), z′(t)).

For example the circle of radius a, centered at the origin in the xy-plane with positive
(counter-clockwise) orientation can be parameterized by

r(t) = (a cos t, a sin t), 0 6 t 6 2π.

For another example, the line segment from r0 to r1 may be parameterized by

r(t) = (1− t)r0 + tr1, 0 6 t 6 1.

• Line Integrals. Let C be a space curve as above.

(a) The line integral of a function f along C is∫
C

f ds =

∫ b

a

f(r(t))|r′(t)| dt.

(b) The line integral of a function f along C w.r.t. x is∫
C

f dx =

∫ b

a

f(r(t))x′(t) dt.

and similarly w.r.t. y and z.



(c) The line integral of a vector field F along C is∫
C

F · dr =

∫ b

a

F(r(t)) · r′(t) dt.

Note the relations ∫
C

F ·T ds =

∫ b

a

F(r(t)) ·T(t)|r′(t)| dt

=

∫ b

a

F(r(t)) · r′(t) dt

=

∫
C

F · dr

and ∫
C

F · dr =

∫
C

P dx+Qdy +Rdz for F = P i +Qj +Rk.

• Fundamental Theorem for Line Integrals. For C a smooth curve (parameterized as
above) and f with continuous partial derivatives then∫

C

∇f · dr = f(r(b))− f(r(a)).

It follows from this theorem that integrals of conservative vector fields are indepen-
dent of the path taken between the endpoints. It also follows that the integral of a
conservative field around a closed curve is zero.

• Tests for when a vector field is conservative. We can use the following tests. For
a 2-dimensional field F(x, y) = P i + Qj with continuous partial derivatives on a
domain (x, y) ∈ D then

F conservative =⇒ ∂P

∂y
=
∂Q

∂x
on D,

∂P

∂y
=
∂Q

∂x
on D (D open, simply connected) =⇒ F conservative.

For a 3-dimensional field F with continuous partial derivatives on a domain D then

F conservative =⇒ curl F = 0 on D,
curl F = 0 on D = R3 =⇒ F conservative.

For example, if you compute curl F and find it is not zero, then F is not conservative.
Another way to prove a field is conservative is to try to partially integrate it w.r.t. x,
y (and z) to find the potential function f .

• Parametric Surfaces. Let S be a surface, parameterized by

r(u, v) = (x(u, v), y(u, v), z(u, v)) (u, v) ∈ D.

The tangent vectors to the surface at the point r(u, v) are

ru =
∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k,

rv =
∂x

∂v
i +

∂y

∂v
j +

∂z

∂v
k.



This gives a normal vector ru× rv to the surface at the point r(u, v) and the equation
of the tangent plane to the surface there is

((x, y, z)− r(u, v)) · (ru × rv) = 0.

We can define the unit normal to S to be

n =
ru × rv

|ru × rv|
.

Changing the sign of n gives the opposite direction for the normal. A surface S is
called orientable if you can choose the normal n so that it varies continuously over S.
(For example, the Möbius strip is not orientable, but a sphere is.) Every orientable
surface has two possible orientations.

• Surface Integrals. Let S be a surface parameterized as above.

(a) The surface integral of a function f over S is∫∫
S

f dS =

∫∫
D

f(r(u, v))|ru × rv| dA.

(b) The surface integral of a vector field F over an oriented surface S is∫∫
S

F · dS = ±
∫∫

D

F · (ru × rv) dA

with the sign depending on the choice of orientation. Note the relation∫∫
S

F · n dS =

∫∫
D

F · ru × rv

|ru × rv|
|ru × rv| dA

=

∫∫
D

F · (ru × rv) dA

=

∫∫
S

F · dS

and this surface integral is also called the flux of F across S.

• When the surface S is a graph. A nice case is when a surface S is given by the set
of points (x, y, z) where (x, y) ∈ D and z = g(x, y). We give this surface the upward
orientation. Let F = P i +Qj +Rk be a vector field. You should know how to derive
the useful formula ∫∫

S

F · dS =

∫∫
D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA.

• Green’s Theorem. Let C be a positively oriented, piecewise-smooth, simple closed
curve in the xy-plane with D the region bounded by C. If P and Q have continuous
partial derivatives on an open region containing D then∫

C

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.



• Stokes’ Theorem. Let S be an oriented piecewise-smooth surface that is bounded by
a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let
F be a vector field with continuous partial derivatives on an open region containing
S then ∫

C

F · dr =

∫∫
S

curl F · dS.

• The Divergence Theorem. Let E be a simple solid region and let S be the boundary
surface of E with the outward orientation. Let F be a vector field with continuous
partial derivatives on an open region containing E then∫∫

S

F · dS =

∫∫∫
E

div F dV.

• Theorems. You should know how to state precisely and apply the following theo-
rems:

(i) The Inverse Function Theorem

(ii) Fubini’s Theorem

(iii) The Fundamental Theorem for Line Integrals

(iv) Green’s Theorem

(v) Stokes’ Theorem

(vi) The Divergence Theorem

• Measurement. A nice application of our work is to compute lengths, areas and
volumes. ∫

C

1 ds = length of curve C∫∫
D

1 dA = area of flat surface D∫∫
S

1 dS = area of surface S∫∫∫
B

1 dV = volume of solid B.

We also saw how to compute the area of D using a line integral: choose P and Q so
that ∂Q

∂x
− ∂P

∂y
= 1, for example Q = x and P = 0, then by Green’s Theorem

area of flat surface D =

∫∫
D

1 dA =

∮
∂D

x dy.

• Center of mass. Another application is to find the mass m and center of mass (x, y)
of an object with possibly varying density.

(a) Let a thin wire with linear density ρ(x, y) at each point be shaped like the curve
C in the xy-plane. Then

m =

∫
C

ρ(x, y) ds, x =
1

m

∫
C

xρ(x, y) ds, y =
1

m

∫
C

yρ(x, y) ds.



(b) Let D be a lamina (thin flat shape) in the xy-plane with ρ(x, y) giving the mass
per area at each point. Then

m =

∫∫
D

ρ(x, y) dA, x =
1

m

∫∫
D

xρ(x, y) dA, y =
1

m

∫∫
D

yρ(x, y) dA.

(c) Let a thin sheet be curved like the parametric surface S with ρ(x, y, z) giving
the mass per area at each point. Then

m =

∫∫
S

ρ(x, y, z) dS

and the center of mass (x, y, z) is found by

x =
1

m

∫∫
S

xρ(x, y, z) dS, y =
1

m

∫∫
S

yρ(x, y, z) dS, z =
1

m

∫∫
S

zρ(x, y, z) dS.


