Do any 12 of these 15 questions. They are worth 8 points each, making 96, with 4 points for neatness. Put all your work and answers in the provided booklets. To get all 8 points for a question it is very important that you show clearly all your working out and reasoning.
(1) Use Lagrange multipliers to find the maximum and minimum values of

$$
f(x, y)=4 x+6 y
$$

subject to the constraint $x^{2}+y^{2}=13$.
(2) Suppose that x and y are functions of a and b, given by

$$
x=a^{3}-2 b, \quad y=a+a b^{2} .
$$

(a) According to the Inverse Function Theorem, near which points (a, b) can we solve for a and b in terms of x and y ?
(b) In particular, can we solve for a and b in terms of x and y near $(a, b)=(0,0)$?
(3) Let $f(x, y)=2 x y+y^{2}$. Let $R=[-2,2] \times[-2,4]$, the rectangle containing all points (x, y) with $-2 \leqslant x \leqslant 2$ and $-2 \leqslant y \leqslant 4$.
(a) Use a double Riemann sum breaking $[-2,2]$ into 2 equal pieces and $[-2,4]$ into 3 equal pieces, with central sample points, to estimate:

$$
\iint_{R} f(x, y) d A
$$

(b) Compute the above double integral exactly.
(4) Let D be the region bounded by $y=\sqrt{x}$ and $y=x$. Compute: $\iint_{D} 2 x y d A$
(5) On one graph, display the two cardioids $r=3+\cos \theta$ and $r=2+\cos \theta$ (given in polar coordinates). Then find the area of the region between them.
(6) Evaluate

$$
\iiint_{E} \sqrt{x^{2}+z^{2}} d V
$$

where E is the region bounded by the paraboloid $y=x^{2}+z^{2}$ and the plane $y=4$.
(7) A lamina has the shape of $R=[0,2] \times[0,1]$, the rectangle containing all points (x, y) with $0 \leqslant x \leqslant 2$ and $0 \leqslant y \leqslant 1$. Suppose its density at (x, y) is

$$
\rho(x, y)=x+y
$$

(a) Find the lamina's total mass.
(b) Find its center of mass.
(8) Let $\mathbf{F}(x, y)=y^{2} \mathbf{i}+2 x y \mathbf{j}$ be a vector field. Prove that \mathbf{F} is conservative by finding f so that $\nabla f=\mathbf{F}$. Then use the fundamental theorem for line integrals to evaluate

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

for C the cosine wave $y=2 \cos (\pi x)$ from $(0,2)$ to $(3,-2)$.
(9) Let $f(x, y, z)$ and $g(x, y, z)$ be functions with continuous second order derivatives.
(a) Show that: $\operatorname{curl}(\nabla f)=0$
(b) Show that: $\operatorname{div}(\nabla f \times \nabla g)=0$
(10) State Green's Theorem. Use it to evaluate the line integral

$$
\int_{C} \cos y d x+x^{2} \sin y d y
$$

where C is the rectangle going from $(0,0)$ to $(0, \pi)$ to $(5, \pi)$ to $(5,0)$ and back to $(0,0)$.
(11) Compute the area of a sphere of radius R.
(12) Let F be the vector field given by

$$
\mathbf{F}(x, y, z)=x y \mathbf{i}+y z \mathbf{j}+z x \mathbf{k}
$$

Let S be the part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the square $0 \leqslant x \leqslant 1$, $0 \leqslant y \leqslant 1$ with upward orientation. Calculate the flux of \mathbf{F} across S.
(13) Use the Divergence Theorem to find the flux of the vector field

$$
\mathbf{F}(x, y, z)=z y^{2} \mathbf{i}+y \mathbf{j}+x y \mathbf{k}
$$

across the surface of the box bounded by the planes $x=0, x=3, y=0, y=2, z=0$ and $z=1$.
(14) Use Stokes' Theorem to compute

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}
$$

where

$$
\mathbf{F}(x, y, z)=x z \mathbf{i}+y z \mathbf{j}+x y \mathbf{k}
$$

and S is the part of the sphere $x^{2}+y^{2}+z^{2}=9$ that lies inside the cylinder $x^{2}+y^{2}=4$ and above the $x y$-plane.
(15) Find the area of the part of the plane $2 x+3 y+z=6$ that lies inside the cylinder $x^{2}+y^{2}=9$.

