Math 35, Homework 8 on Sections 16.6, 16.7, 16.8

due Wed, May 7 at the start of class.

(1) Let T be the triangular region with vertices $(1,0,0),(0,2,0)$ and $(0,0,2)$. Compute the surface integral of $x y$ over T. In other words, find:

$$
\iint_{T} x y d S
$$

(2) Let S be the surface given by

$$
\mathbf{r}(u, v)=u^{2} \mathbf{i}+u \sin v \mathbf{j}+u \cos v \mathbf{k} \quad \text { where } \quad 0 \leqslant u \leqslant 1,0 \leqslant v \leqslant \pi / 2
$$

Find:

$$
\iint_{S} y z d S
$$

(3) Let

$$
\mathbf{F}(x, y, z)=x \mathbf{i}+x^{2} \mathbf{j}-y \mathbf{k}
$$

and let T be the part of the paraboloid $z=x^{2}+3 y^{2}$ that lies above the square $-1 \leqslant x \leqslant 1$, $-1 \leqslant y \leqslant 1$. Evaluate:

$$
\iint_{T} \mathbf{F} \cdot d \mathbf{S}
$$

(4) Let

$$
\mathbf{F}(x, y, z)=x y \mathbf{i}+x \mathbf{j}+z \mathbf{k}
$$

and let H be the hemisphere $x^{2}+y^{2}+z^{2}=25, z \geqslant 0$ oriented away from the origin. Evaluate the flux of \mathbf{F} across H :

$$
\iint_{H} \mathbf{F} \cdot d \mathbf{S}
$$

(5) Let

$$
\mathbf{F}(x, y, z)=2 y \cos z \mathbf{i}+e^{x} \sin z \mathbf{j}+x e^{y} \mathbf{k}
$$

and let S be the hemisphere $x^{2}+y^{2}+z^{2}=9, z \geqslant 0$ oriented upward. Use Stokes' Theorem to evaluate:

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}
$$

(6) Use Stokes' Theorem to evaluate

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where

$$
\mathbf{F}(x, y, z)=e^{-x} \mathbf{i}+e^{x} \mathbf{j}+e^{z} \mathbf{k}
$$

and C is the boundary of the part of the plane $2 x+y+2 z=2$ in the first octant, oriented counterclockwise as viewed from above.
(7) Verify that the Divergence Theorem is true for the vector field

$$
\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
$$

and the region E given by the unit ball $x^{2}+y^{2}+z^{2} \leqslant 1$ by computing both sides.
(8) Use the Divergence Theorem to calculate the flux of \mathbf{F} across S where S is the surface of the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $x+2 y+z=2$ and

$$
\mathbf{F}(x, y, z)=x^{2} y \mathbf{i}+x y^{2} \mathbf{j}+2 x y z \mathbf{k} .
$$

