Math 35, Homework 7 on Sections 16.4, 16.5, 16.6 due Wed, Apr 23 at the start of class.

(1) Evaluate the line integral

$$
\int_{C}(x-y) d x+(x+y) d y
$$

directly, where C is the circle $x^{2}+y^{2}=4$, oriented positively.
(2) Evaluate the integral in the last question using Green's Theorem.
(3) Use Green's Theorem to evaluate

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where

$$
\mathbf{F}(x, y)=y^{2} \cos x \mathbf{i}+\left(x^{2}+2 y \sin x\right) \mathbf{j}
$$

and C is the triangle from $(0,0)$ to $(2,6)$ to $(2,0)$ to $(0,0)$.
(4) Find the area of the triangle D with vertices $(0,0),(1,3)$ and $(4,4)$ using Green's Theorem. For example you could use the area formula:

$$
A(D)=\oint_{\partial D} x d y
$$

(5) Define the vector field

$$
\mathbf{F}(x, y, z)=e^{x} \mathbf{i}+e^{x y} \mathbf{j}+e^{x y z} \mathbf{k}
$$

and compute
(a) its divergence: $\nabla \cdot \mathbf{F}$
(b) its curl: $\nabla \times \mathbf{F}$.
(6) Let

$$
\mathbf{G}(x, y, z)=x y^{2} z^{2} \mathbf{i}+x^{2} y z^{2} \mathbf{j}+2 x^{2} y^{2} z \mathbf{k}
$$

Show \mathbf{G} is not conservative by finding $\nabla \times \mathbf{G}$.
(7) Let \mathbf{F} and \mathbf{G} be two differentiable vector fields with components

$$
\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}, \quad \mathbf{G}=A \mathbf{i}+B \mathbf{j}+C \mathbf{k}
$$

Prove the identity

$$
\nabla \cdot(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot(\nabla \times \mathbf{F})-\mathbf{F} \cdot(\nabla \times \mathbf{G})
$$

(8) Let

$$
\mathbf{r}(u, v)=\left\langle u+v, u^{2}-v, u+v^{2}\right\rangle
$$

be a surface parameterized by $(u, v) \in \mathbb{R}^{2}$. Are either of the points $P(3,-1,5)$ and $Q(-1,3,4)$ on this surface?
(9) Let S be the surface parameterized by

$$
\mathbf{r}(u, v)=3 \cos u \mathbf{i}+3 \sin u \mathbf{j}+v \mathbf{k} \quad \text { where } \quad 0 \leqslant u \leqslant \pi / 2,0 \leqslant v \leqslant 2
$$

Sketch S.
(10) Find the surface area of S from the previous question with the formula

$$
A(S)=\iint_{D}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A
$$

