Math 35, Homework 5 on Sections 15.7-15.10 due Wed, Mar 19 at the start of class.

(1) Evaluate the iterated integral:

$$
\int_{0}^{1} \int_{x}^{2 x} \int_{0}^{y} 2 x y z d z d y d x
$$

(2) Compute the triple integral $\iiint_{E} y d V$ where E is bounded by the planes $x=0, y=0$, $z=0$ and $2 x+2 y+z=4$.
(3) Use a triple integral with cylindrical coordinates to find the volume inside both the sphere $x^{2}+y^{2}+z^{2}=4$ and the cylinder $x^{2}+y^{2}=1$.
(4) Plot the point with spherical coordinates $(2, \pi, \pi / 4)$ and then find its rectangular coordinates.
(5) Sketch the solid whose volume is given by the integral

$$
\int_{0}^{2 \pi} \int_{\pi / 2}^{\pi} \int_{1}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

and then evaluate this integral.
(6) Let H be the solid hemisphere given by $x^{2}+y^{2}+z^{2} \leqslant 9$ and $z \geqslant 0$. Evaluate:

$$
\iiint_{H}\left(9-x^{2}-y^{2}\right) d V
$$

(7) Use a triple integral with spherical coordinates to find the volume inside both the sphere $x^{2}+y^{2}+z^{2}=4$ and the cone $z=\sqrt{x^{2}+y^{2}}$.
(8) For the change of variables $x=u v, y=u / v$ find the Jacobian:

$$
\frac{\partial(x, y)}{\partial(u, v)}
$$

(9) For the change of variables

$$
x=\frac{1}{4}(u+v), \quad y=\frac{1}{4}(-3 u+v)
$$

find the Jacobian:

$$
\frac{\partial(x, y)}{\partial(u, v)}
$$

(10) Let R be the parallelogram with vertices $(1,5),(3,-1),(1,-3)$ and $(-1,3)$. Evaluate the integral

$$
\iint_{R}(4 x+8 y) d A
$$

using the change of variables from question (9) above.

