Math 35, Homework 4 on Sections 15.4, 15.5
 due Wed, Mar 5 at the start of class.

(1) Sketch the region whose area is given by the following integral and evaluate the integral:

$$
\int_{\pi / 2}^{\pi} \int_{1}^{3} r d r d \theta
$$

(2) Let D be the disk of radius 4 centered at the origin. Evaluate: $\iint_{D} x y d A$
(3) Graph the cardioid $r=1+\cos \theta$ in polar coordinates and then find its area.
(4) Find the volume inside the sphere $x^{2}+y^{2}+z^{2}=16$ and outside the cylinder $x^{2}+y^{2}=4$ using polar coordinates.
(5) Electric charge is distributed over the disk $x^{2}+y^{2} \leqslant 4$ so that the charge density at (x, y) is

$$
\sigma(x, y)=x+y+x^{2}+y^{2}
$$

coulombs per square meter. Find the disk's total charge.
(6) A triangular lamina with uniform density has boundary lines $x=0, y=0$ and $x+y=$ 2. Find its center of mass.
(7) A lamina occupies the part of the disk $x^{2}+y^{2} \leqslant 4$ in the first quadrant. If its density at (x, y) is

$$
\rho(x, y)=x
$$

kg per square meter, find its total mass.
(8) Find the center of mass of the lamina from question (7).
(9) Let D be the region bounded by $y=e^{x}, y=0, x=0$ and $x=1$. Suppose this lamina has density $\rho(x, y)=y$. Find its moments of inertia I_{x}, I_{y} and I_{0}.

