Math 35, Homework 3 on Sections 15.1, 15.2, 15.3

due Wed, Feb 26 at the start of class.

(1) Let $f(x, y)=1+x y-y^{2}$ and $R=[1,7] \times[0,4]$. In other words, R is the rectangle containing all points (x, y) with $1 \leqslant x \leqslant 7$ and $0 \leqslant y \leqslant 4$. Use a Riemann sum with $m=3$ and $n=2$ (so breaking $[1,7]$ into 3 equal pieces and $[0,4]$ into 2 equal pieces), and sample points in the middle (midpoint rule), to estimate:

$$
\iint_{R} f(x, y) d A
$$

(2) For $R=[3,6] \times[-1,7]$, find $\iint_{R} 2 d A$ just by identifying it as the volume of a certain solid.
(3) For $R=[0,5] \times[0,3]$, find $\iint_{R}(5-x) d A$ by identifying it as the volume of a wedgeshaped solid.
(4) Calculate the iterated integral:

$$
\int_{\pi / 6}^{\pi / 2} \int_{-1}^{5} \cos y d x d y
$$

(5) Use an iterated integral to calculate the double integral $\iint_{R} f(x, y) d A$ from question (1) exactly.
(6) Find

$$
\iint_{R} \frac{x}{1+x y} d A, \quad R=[0,1] \times[0,1] .
$$

(7) Find the volume of the solid enclosed by the surface

$$
z=1+e^{x} \sin y
$$

and the planes $x= \pm 1, y=0, y=\pi$ and $z=0$.
(8) Let D be the region bounded by $y=\sqrt{x}$ and $y=x^{2}$. Compute: $\iint_{D}(x+y) d A$
(9) Sketch the region of integration for

$$
\int_{0}^{1} \int_{x}^{1} e^{x / y} d y d x
$$

and then evaluate this integral by using your picture to reverse the order of integration.

