Math 35, Homework 2 on Sections 3.4, 14.8, 3.5
 due Wed, Feb 19 at the start of class.

(1) Use Lagrange multipliers to find the maximum and minimum values of

$$
f(x, y)=4 x+6 y
$$

subject to the constraint $x^{2}+y^{2}=13$.
(2) Use Lagrange multipliers to find the maximum and minimum values of

$$
f(x, y)=e^{x y}
$$

subject to the constraint $x^{3}+y^{3}=16$.
(3) Use Lagrange multipliers to find the maximum and minimum values of

$$
f(x, y, z)=x^{4}+y^{4}+z^{4}
$$

subject to the constraint $x^{2}+y^{2}+z^{2}=1$.
(4) Find the extreme values of

$$
f(x, y)=2 x^{2}+3 y^{2}-4 x-5
$$

on the region described by the inequality $x^{2}+y^{2} \leqslant 16$.
(5) Use Lagrange multipliers to prove that the rectangle with the maximum area that has a given perimeter p is a square.
(6) Let $f(x, y)=(y+1)^{2}-x^{3}+6$. For what values of y does $f(x, y)=0$ make y an implicit function of x ? Find the two implicit functions by solving for y.
(7) Let

$$
g(x, y, z)=\frac{x y}{z}+\frac{x z}{y}+4 \frac{y z}{x}-6 .
$$

Then $(2,1,1)$ is a solution to $g(x, y, z)=0$. Close to $(2,1,1)$ does $g(x, y, z)=0$ make z an implicit function of x, y ?
(8) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $f(x, y)=\left(x y e^{y}+x^{4}, y \ln x\right)$. Find the Jacobian determinant of f.
(9) Suppose

$$
x=a+b^{2}, \quad y=a b+2 b^{3} .
$$

Near which points (a, b) can we solve for a and b in terms of x and y.

