Math 35, Homework 1 on Sections 1.5, 2.3

 due Wed, Feb 5 at the start of class.(1) Let $\mathbf{u}=(1,-3,0)$ and $\mathbf{v}=(2,1,-2)$. Compute $\|\mathbf{u}\|,\|\mathbf{v}\|, \mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \times \mathbf{v}$.
(2) Find the angle between the vectors \mathbf{u} and \mathbf{v} from question (1) to the nearest degree.
(3) Verify the Cauchy-Schwarz inequality and the triangle inequality for \mathbf{u} and \mathbf{v} from question (1).
(4) Compute $A B$, $\operatorname{det} A$, $\operatorname{det} B \operatorname{det}(A B), \operatorname{det}(A+B)$ for

$$
A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 1 \\
4 & -3 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
2 & 0 & -1 \\
0 & 0 & 1 \\
1 & 5 & 1
\end{array}\right]
$$

(5) Let $U=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and I the identity matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Let $V=\frac{1}{\operatorname{det} U}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$. Verify that V is the inverse of U. In other words check that

$$
U V=I=V U
$$

(6) If $f(x, y)=-x+2 x y+e^{x y}$ find $\partial f / \partial x$ and $\partial f / \partial y$
(7) Suppose $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is given by $g(x, y)=(x / y, y / x, \log (x y))$. Compute the derivative of g at $\mathbf{x}_{0}=(1,1)$. In other words find $\mathbf{D} g\left(\mathbf{x}_{0}\right)$.
(8) Is the function g from question (7) differentiable at $(1,1)$? Is it continuous at $(1,1)$?
(9) Find the equation of the tangent plane to the surface $z=x^{2}+y^{3}$ at $(3,1,10)$.
(10) Let $f(x, y, z)=5 x y \sin z$. Calculate $\nabla f(2,1,0)$.

