Mth 21, Homework 8 on section 3.4

Due by Wed, Nov 8.

Please use lots of space and explain your answers, showing clearly any work you had to do. Each question is worth 3 points.
(1) Find the probability that in a group of 7 random people, 2 have the same birthday. Use these steps:
(a) The experiment is asking 7 people their birthdays. Find $n(S)$, the size of the sample space of possible answers.
(b) Let E be the event that 2 or more share the same birthday. Let E^{\prime} be the complementary event that all 7 have different birthdays. Compute $n\left(E^{\prime}\right)$ using the counting principle.
(c) Find $p\left(E^{\prime}\right)$.
(d) Find $p(E)$, which is the answer we are looking for.
(Hint: you should get $p(E)$ close to 5%.)
(2) A lottery uses numbers 1 to 50 . In the weekly draw, six numbers are picked.
(a) Find the probability that the six numbers on your ticket match and you win the grand prize.
(b) Find the probability that five of your numbers match.
(3) Suppose you are dealt 4 cards from the pack of 52. The order is not important. How many 4 card combinations are possible?
(Hint: it's more than 200000.$)$
(4) You are dealt a five card poker hand. What is the probability of getting the $2,3,4,5$ and 6 of clubs?
(5) You are dealt a five card poker hand. What is the probability of getting any five clubs?

If you get stuck on a question or aren't sure if you understand it:

- Go over the relevant class notes and section in the textbook.
- Check if you get the right answer for a similar odd-numbered question in the textbook (answers at the back of the book).
- Ask me about it after class.
- Come to my office hours: Mon 11:30-12:30, Wed 11:30-12:30 in CP 317.
- Go to the Math Tutorial Lab in-person in CP 303 or online.

