Mth 21, Homework 3 on sections 2.5, 4.1

Due by Wed, Sept 27.

Please use lots of space and explain your answers, showing clearly any work you had to do. Each question is worth 3 points.
(1) The sets A and B are given by

$$
\begin{aligned}
& A=\{2,4,6,8, \ldots, 362\} \\
& B=\{3,6,9,12, \ldots, 549\} .
\end{aligned}
$$

Are these sets equivalent?
(Hint: To be equivalent there must be a one-to-one correspondance between them. You could try n in A corresponding to $3 n / 2$ in B.)
(2) Define the infinite sets

$$
\begin{aligned}
S & =\{2,4,6,8, \ldots\} \\
T & =\{3,6,9,12, \ldots\} .
\end{aligned}
$$

(a) Are S and T equivalent? Explain.
(b) What does countable mean exactly?
(c) Are S and T countable or uncountable? Explain.
(3) We saw in class that the following table can be used to show that all the positive fractions are countable:

$\frac{1}{1}$	$\frac{2}{1}$	$\frac{3}{1}$	$\frac{4}{1}$	$\frac{5}{1}$	$\frac{6}{1}$	\ldots
$\frac{1}{2}$	$\frac{2}{2}$	$\frac{3}{2}$	$\frac{4}{2}$	$\frac{5}{2}$	$\frac{6}{2}$	\ldots
$\frac{1}{3}$	$\frac{2}{3}$	$\frac{3}{3}$	$\frac{4}{3}$	$\frac{5}{3}$	$\frac{6}{3}$	\ldots
$\frac{1}{4}$	$\frac{2}{4}$	$\frac{3}{4}$	$\frac{4}{4}$	$\frac{5}{4}$	$\frac{6}{4}$	\ldots
$\frac{1}{5}$	$\frac{2}{5}$	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{5}{5}$	$\frac{6}{5}$	\ldots

Use the diagonal pattern we saw to continue this list of fractions $\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{3}{1}, \frac{1}{3}$ as far as $\frac{1}{5}$. (Don't forget to leave out any fractions like $\frac{2}{2}$ that reduce to an earlier fraction.)
(4) A survey asked 30 people how many books they had read in the last two weeks. The results were

2	3	0	0	1	5	1	2	4	0
3	0	2	1	1	2	3	4	2	2
2	2	3	4	5	2	0	1	2	1

(a) Make a frequency distribution table showing frequency and relative frequency.
(b) Draw a histogram.
(c) Draw a pie chart.
(5) The police checked speeds on a highway and got these results for 20 cars (in mph):

59	72	55	67	81	63	59	80	71	68
65	70	74	77	67	50	73	68	72	60

(a) Group the data into 4 categories and make a frequency distribution table showing frequency and relative frequency.
(b) Draw a histogram - it should have 4 bars.
(Hint: Subtract the lowest speed from the highest and then divide by 4 to get the size of each category.)
(6) From your answers in Question 5, what percentage of drivers were going over the speed limit of 65?

If you get stuck on a question or aren't sure if you understand it:

- Go over the relevant class notes and section in the textbook.
- Check if you get the right answer for a similar odd-numbered question in the textbook (answers at the back of the book).
- Ask me about it after class.
- Come to my office hours: Mon 11:30-12:30, Wed 11:30-12:30 in CP 317.
- Go to the Math Tutorial Lab in-person in CP 303 or online.

