Review of chapter 5 Induction + recursion
We use mathematical induction to prove that all the propositions $P(1), P(2), P(3), \ldots$ are true. I want you to use there steps:
(A) Write down what $P(n)$ says.
(B) Basis step - check $P(1)$ is true
(C) Inductive step - check that you can use $P(k)$ being true to show that $P(k+1)$ is true.
(D) Write "So by mathematical induction $P(n)$ is true for all $n \geqslant 1$.
Example (1) Prove that $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}$
for all $n \geq 1$.
Solution:
(A) $P(n)$ says that $\frac{1}{1 \cdot 2}+\frac{1}{2-3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}$
(B) Basis step. $P(1)$ says $\frac{1}{1 \cdot 2}=\frac{1}{1+1} \quad(n=1)$
this is $\frac{1}{2}=\frac{1}{2} \sqrt{ }$ so $P(1)$ true.
(c) Inductive step.

Assume $P(k)$ is true.
So $\frac{1}{1-2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{k(k+1)}=\frac{k}{k+1}$ true add to both sides $\frac{1}{(k+1)(k+2)} \frac{1}{(k+1)(k+2)}$
So $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{k(n+1)}+\frac{1}{(k+1)(k+2)}=\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}$
is true
the left side matches $P(k+1)$. How about the right side?

$$
\begin{aligned}
\frac{k}{k+1}+\frac{1}{(k+1)(k+2)} & =\frac{k(k+2)}{(k+1)(k+2)}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k^{2}+2 k+1}{(k+1)(k+2)} \\
& =\frac{(k+1)(k+1)}{(k+1)(k+2)}
\end{aligned}
$$

So

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(k+1)(k+2)}=\frac{k+1}{k+2} \text { is true }
$$

and this is $P(k+1)$. We have finished the inductive step.
(D) So by mathematical induction $P(n)$ is true for all $n \geqslant 1$.

Review the notes and videos for section 5.1 to see many more examples of induction.

In the usual induction the inductive hypothesis is assuming $P(k)$ is true.
We also looked at strong induction. There the inductive hypothesis is that $P(1), P(2), \ldots, P(k)$ are all true.

Either way you must use the inductive hypothesis to show that $P(k+1)$ is true.

Recursion is a way to define functions, sets, sequences or graphs step-by-step.
A recursive definition has two parts a basis step and a recursive step.

Example (2) Define the function $q(n)$ with
Basis step: $q(0)=4$
Recursive step: $q(n+1)=10 q(n)$
Compute $q(1), q(2), q(3)$. Can you guess a formula for $q(n)$?

Solution: Take $n=0$ in the recursive step to see

$$
\begin{aligned}
q(0+1) & =10 q(0) \\
\text { so } q(1) & =10 \cdot 4=40
\end{aligned}
$$

then $n=1: q(1+1)=10 q(1)$

$$
\text { so } q(2)=10.40=400
$$

with $n=2$: $q(2+1)=10 q(2)$

$$
q(3)=10 \cdot 400=4000
$$

We can sec that $q(n)=4 \cdot 10^{n}$ is how the pattern goes.

This explicit formula $q(n)=4 \cdot 10^{n}$ could be proved by induction.
use $p(n)$ says $q(n)=4 \cdot 10^{n}$
and use the recursive step to check the inductive step.

Next we give an example of a recursively defined set (of ordered pairs).

Example (3) Let s he defined by
Basis step: $(2,1) \in S$
Recursive step: If $(a, b) \in S$ then $(a+4, b+2)$ $\in S$.
Find 4 different elements of S.
Solution: At the start we only know one element of S, that is $(2,1)$, so we can only use the recursive step with $a=2, b=1$
then $(2+4,1+2) \in S$

$$
=(6,3)
$$

Can now take $a=6, b=3$ so

$$
(6+4,3+2)=(10,5) \in S .
$$

Next $(14,7) \in S$. We've found that
$(2,1),(6,3),(10,5)$ and $(14,7)$ are in S.

We saw in the notes that bit strings like 1011 or 0100010110 can also be defined recursively. To make a new bit string just add a 0 or 1 on the right. So from 1011 we can make

For the basis step start with the empty bit string (called λ).

Step-by-step we get $\lambda, 0,1,00,01,10,11,000 \ldots$
These are the set of strings \sum^{*} over the alphabet $\Sigma=\{0,1\}$.

For any alphabet (set of symbols) \sum the recursive definition of Σ^{*} is

Basis step: empty string $\lambda \in \Sigma^{*}$
Recursive step: if $\omega \in \Sigma^{*}$ and $x \in \mathcal{\Sigma}$ then $\omega x \in \Sigma^{*}$.

Example (4) If $\Sigma=\{9\}$ find 5 elements of Σ^{*}.

Solution: Start with $\omega=\lambda$ and $x=9$
and the recursive step says $\lambda 9=9 \in \Sigma^{*}$.
Next take $w=9, x=9$ and $99 \in \Sigma^{*}$.
Next $w=99, x=9$ so $999 \in \Sigma^{*}$, $w=999, x=9$ makes $9999 \in \Sigma^{*}$.

Five elements of Σ^{*} are $\lambda, 9,99,999,9999$. We just get strings of 9 s in this Σ^{*}.

We also gave recursive definitions for rooted trees and full binary trees.

We can use structural induction to prove things about recursively defined objects.

It works like this: (1) show the basis objects have the property, (2) show that if old objects have the property then the new objects made in the recursive step must also have the property. If (1) and (2) can be verified then by structural induction all the objects have the property.

Example (5) For the set S in example (3) prove that if $(a, b) \in S$ then $a=2 b$.

Solution: The basis object is $(2,1)$ and $a=2, b=1$ means $a=2 b$ is true.

Next, suppose $(a, b) \in S$ hes $a=2 b$ ald \rightarrow
then what about $(a+4, b+2)$? new \rightarrow from recursive step

$$
a+4=2 b+4=2(b+2)
$$

The new object has the property we want.
So by structural induction, for every $(a, b) \in S$ we have $a=2 b$.

Recursive algorithms execute a task by calling themselves with smaller inputs.

We saw examples in the notes that computed factorials and Fibonacci numbers.

The Euclidean Algorithm is a recursive algorithm to compute the gad of two numbers:
procedure $\operatorname{gcd}(a, b:$ integers $0 \leq a<b)$
If $a=0$ then retwin b
else return $\operatorname{gcd}(b \bmod a, a)$
\{output is $\operatorname{gcd}(a, b)\}$

Example (6) Show how this procedure computes the ged of 391,506.

Solution: $\quad a=391, b=506$

$$
a \neq 0
$$

so next find $\operatorname{gcd}(b \bmod a, a)$

$$
\begin{aligned}
& \frac{1}{391} \frac{\operatorname{se6}}{-\frac{391}{115} \leftarrow \operatorname{rem}}=\operatorname{gcd}(\underbrace{506 \bmod 391}, 391) \\
&=\operatorname{gcd}(115,391) \\
& \text { calls itself }
\end{aligned}
$$

- New $a=115$, new $b=391$

$$
a \neq 0
$$

Find next $\operatorname{gcd}(391 \bmod 115,115)$

$$
\begin{aligned}
& 115 \sqrt{391}=\operatorname{gcd}(46,115) \\
& \frac{-345}{46} \leftarrow \text { rem calls itself again } \\
& a=46, b=115 \\
& a \neq 0
\end{aligned}
$$

need $\operatorname{gcd}(115 \operatorname{mad} 46,46)$

$$
46 \sqrt{\frac{115}{\frac{-92}{23} \leftarrow \mathrm{rem}}}=\operatorname{gcd}(23,46)
$$

$$
a=23, b=46
$$

$$
a \neq 0
$$

need $\operatorname{gcd}(46 \operatorname{rod} 23,23)$

$$
=\operatorname{gcd}(0,23)
$$

$$
\underbrace{a=0}, \quad b=23
$$

return $b=23$
Computation shows gad of 391 and 506 is 23 .

We also looked at the recursive algorithm Merge Sort that efficiently sorts sets of integers into increasing order.

