Math 05, Homework 4 on Sections 3.1, 3.2, 3.3, 3.5 due Mon, Oct 19 at the start of class.

Write all your working out and answers on a separate sheet. It is very important that you show clearly any work you had to do to get the answer. These first ten questions are 1 point each and the answers are on page 2.
(1) For the equation $2 x+y=3$ complete the table of values:

x	y
-2	
0	
2	

(2) Find the x-intercept and the y-intercept of the line $5 x+2 y=10$.
(3) Graph the line: $x+y=-1$
(4) Find the slope of the line between the two points: $(-2,3)$ and $(4,-2)$
(5) Find the slope and y-intercept of the line: $4 x+3 y=2$
(6) Show that the two lines $y=-2 x+1$ and $y=\frac{1}{2} x+3$ are perpendicular.
(7) Find the equation of the vertical line through the point: $(-2,3)$
(8) Find the slope-intercept equation of the line through the points: $(3,2)$ and $(2,1)$
(9) Is $(x, y)=(3,-2)$ a solution to $3 x+y \leqslant 10$?
(10) Graph the solution set to the inequality $x-y \leqslant 2$.

These next eight questions are 3 points each. Show clearly all your working out and reasoning.
(11) Find the x-intercept and the y-intercept of the line $-4 x+y=2$.
(12) Graph the line: $3 x+y=3$
(13) Find the slope of the line between the two points: $(-1,1)$ and $(1,-1)$
(14) Find the slope and y-intercept of the line: $5 x+6 y=12$
(15) Show that the two lines $x+2 y=3$ and $x+2 y=4$ are parallel.
(16) Find the equation of the horizontal line through the point: $\quad(0,3)$
(17) Find the slope-intercept equation of the line through the points: $(3,2)$ and $(1,-2)$
(18) Graph the solution set to the inequality $-x+2 y \geqslant 4$.

Answers to questions (1)-(10):

(1)

x	y
-2	7
0	3
2	-1

(2) The x-intercept is $(2,0)$ and the y-intercept is $(0,5)$.
(3)

(4) The slope is $-\frac{5}{6}$.
(5) The slope of the line is $-\frac{4}{3}$ and the y-intercept is $(0,2 / 3)$.
(6) The slope of the first line is -2 and the slope of the second line is $\frac{1}{2}$. The lines are perpendicular since these numbers are negative reciprocals of each other. (Another way to check they are perpendicular is to see that the product $(-2)\left(\frac{1}{2}\right)$ equals -1 .)
(7) The vertical line through $(-2,3)$ has equation $x=-2$.
(8) $y=x-1$
(9) Yes it is a solution

