## Math 06 Practice Final, Spring 2013.

The final covers the entire syllabus. Show all your work clearly with a box around the answer. There will be lots of partial credit if I can see what you are doing. Use your calculator if you need it. Do all 20 questions in 1 hour 50 minutes.

## Evaluating.

Q1. Find exactly: (a) $\sqrt[5]{32}$
(b) $\sqrt{50}-\sqrt{72}$
(c) $27^{-1 / 3}$
(d) $(1 / 3)^{-2}$
(e) $(-8)^{4 / 3}$
Q2. Find exactly: (a) $8^{2}$
(b) $\log _{2} 8$
(c) $\log _{8} 2$

## Algebra.

Q3. Divide and simplify: $\frac{6 y+18}{4 y} \div \frac{3 y+9}{16 y^{3}}$
Q4. Subtract and simplify: $\frac{x^{2}+2}{x(x+1)}-\frac{x-1}{x^{2}}$
Q5. Simplify: (a) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$ (b) $\sqrt{27 x^{3} y^{6}}$
Q6. Write each of these as complex numbers in standard form: (a) $\frac{1+i}{4-i}$ (b) $(7+2 i)^{2}$
Q7. Simplify: $\left(\frac{2 x y^{1 / 6}}{x^{4} z^{-3}}\right)^{3} \quad x, y, z>0$
Q8. Simplify: $\frac{3+\frac{1}{x^{2}-1}}{3-\frac{2 x}{x+1}}$

Solving.
Q9. Solve $3 x^{2}+12 x=12$ by completing the square.
Q10. Solve: $\frac{x}{x-3}-2=\frac{3}{x-3}$
Q11. Solve: $\sqrt{5 x+5}=x+1$
Q12. Solve: (a) $3^{x+2}=\frac{1}{27}$ (b) $\log _{b} \frac{3}{7}=-1$ (c) $\log _{1 / 2} 4=x$

Graphing.
Q13. Graph $y=-x^{2}-5 x-4$ by finding the axis of symmetry, vertex, $y$ intercept and a symmetric point.

Q14. Graph $y=\frac{-1}{2} \sin x$ for $-2 \pi \leqslant x \leqslant \pi$ and give its amplitude.
Q15. Graph $3^{x}+2$ and find the horizontal asymptote.

Trigonometry.
Q16. The central angle $\theta$ of a circle of radius 12 inches determines a sector of area 6 square inches. Give the size of $\theta$ in both degrees and radians.

Q17. Find exactly: $\sin \frac{\pi}{3}+\cos \frac{\pi}{4} \tan \frac{3 \pi}{4}$
Q18. (a) If $\cos \theta=1 / 3$ and $\tan \theta<0$, find $\sin \theta$ and $\sin \theta$ exactly.
(b) Find all solutions to $\cos x=0.81$ for $0 \leqslant x \leqslant 360^{\circ}$.

Q19. What is the angle of elevation of the moon, to the nearest degree, if it gives a 5 foot wall a 2 foot shadow?

Q20. Verify the identity:

$$
\sec x-\frac{\cos x}{1+\sin x}=\tan x
$$

The above questions are similar to ones that will appear on the actual final, but you should also review homework, midterm and test questions. A further review sheet with answers is available on the class web page.

