Math 06, Homework 12 on graphing, identities due Mon, Dec 9 at the start of class.

Write all your answers on a separate sheet. It is very important that you show clearly any work you had to do to get the answer. These first eight questions are 1 point each. Make sure your answers match the solutions on page 2.
(1) For $y=4 \sin x$, sketch the graph for $0 \leq x \leq 2 \pi$ and give the amplitude.
(2) Complete this table of values for $y=-3 \cos x$

x	$\cos x$	$-3 \cos x$
0		
$\pi / 2$		
π		
$3 \pi / 2$		
2π		

(3) For $y=-3 \cos x$, sketch the graph for $0 \leq x \leq 2 \pi$ and give the amplitude.
(4) For $y=\frac{1}{3} \sin x$, sketch the graph for $-2 \pi \leq x \leq 2 \pi$ and give the amplitude.
(5) Find the equation of the sine or cosine function which fits this information: The function has a maximum value of 10 at $x=0$. It then reaches a minimum value of -10 at $x=\pi$. The function attains its maximum value again at $x=2 \pi$.
(6) Explain if this equation is an identity or not:

$$
\cos \theta+\sin \theta=1
$$

(7) Verify the identity:

$$
\sin \theta \sec \theta=\tan \theta
$$

(8) Verify the identity:

$$
(\sec t+1)(\sec t-1)=\tan ^{2} t
$$

These next seven questions are 4 points each. Show clearly all your working out and reasoning.
(9) Complete this table of values for $y=-\sin x$

x	$y=-\sin x$
0	
$\pi / 2$	
π	
$3 \pi / 2$	
2π	

(10) For $y=-\sin x$, sketch the graph for $0 \leq x \leq 2 \pi$ and give the amplitude.
(11) For $y=\frac{3}{4} \cos x$, sketch the graph for $-\pi \leq x \leq 3 \pi$ and give the amplitude.
(12) Find the equation of the sine or cosine function which fits this information: The function has a maximum value of 6 at $x=\pi / 2$. It then reaches a minimum value of -6 at $x=3 \pi / 2$. The function attains its maximum value again at $x=5 \pi / 2$.
(13) Explain if this equation is an identity or not:

$$
\sin \theta+\sec \theta=\tan \theta
$$

(14) Verify the identity:

$$
\sin \alpha=\frac{\tan \alpha \cot \alpha}{\csc \alpha}
$$

(15) Verify the identity:

$$
\frac{\csc \theta}{\cot \theta+\tan \theta}=\cos \theta
$$

Answers to questions (1)-(8):

(1) The amplitude of $y=4 \sin x$ is 4 .

(2)

x	$\cos x$	$-3 \cos x$
0	1	-3
$\pi / 2$	0	0
π	-1	3
$3 \pi / 2$	0	0
2π	1	-3

(3) The amplitude of $y=-3 \cos x$ is 3 .

(4) The amplitude of $y=\frac{1}{3} \sin x$ is $\frac{1}{3}$.

(5) $y=10 \cos x$
(6) For $\theta=\pi$ we have

$$
\cos \theta+\sin \theta=\cos \pi+\sin \pi=-1+0=-1
$$

and so $\cos \theta+\sin \theta=1$ is not an identity since it's not true for all numbers θ.
(7) Starting with the left side:

$$
\begin{aligned}
\sin \theta \sec \theta & \left.=\sin \theta \frac{1}{\cos \theta} \quad \text { (from definition of } \sec \theta\right) \\
& =\frac{\sin \theta}{\cos \theta} \quad(\text { algebra) } \\
& =\tan \theta \quad \text { (from definition of } \tan \theta) .
\end{aligned}
$$

This proves the identity $\sin \theta \sec \theta=\tan \theta$.
(8) Starting with the left side:

$$
\begin{aligned}
(\sec t+1)(\sec t-1) & =\sec ^{2} t-1 \quad \text { (by multiplying out) } \\
& =\tan ^{2} t \quad(\text { by a Pythagorean identity }) .
\end{aligned}
$$

This proves the identity $(\sec t+1)(\sec t-1)=\tan ^{2} t$.

