Math 06, Homework 12 on graphing, identities due Mon, Dec 9 at the start of class.

Write all your answers on a separate sheet. It is very important that you show clearly any work you had to do to get the answer. These first eight questions are 1 point each. Make sure your answers match the solutions on page 2.

- (1) For $y = 4 \sin x$, sketch the graph for $0 \le x \le 2\pi$ and give the amplitude.
- (2) Complete this table of values for $y = -3\cos x$

x	$\cos x$	$-3\cos x$
0		
$\pi/2$		
π		
$3\pi/2$		
2π		

- (3) For $y = -3\cos x$, sketch the graph for $0 \le x \le 2\pi$ and give the amplitude.
- (4) For $y = \frac{1}{3} \sin x$, sketch the graph for $-2\pi \le x \le 2\pi$ and give the amplitude.
- (5) Find the equation of the sine or cosine function which fits this information: The function has a maximum value of 10 at x = 0. It then reaches a minimum value of -10 at $x = \pi$. The function attains its maximum value again at $x = 2\pi$.
- (6) Explain if this equation is an identity or not:

$$\cos\theta + \sin\theta = 1$$

(7) Verify the identity:

$$\sin\theta \sec\theta = \tan\theta$$

(8) Verify the identity:

$$(\sec t + 1)(\sec t - 1) = \tan^2 t$$

These next seven questions are 4 points each. Show clearly all your working out and reasoning.

(9) Complete this table of values for $y = -\sin x$

x	$y = -\sin x$
0	
$\pi/2$	
π	
$3\pi/2$	
2π	

- (10) For $y = -\sin x$, sketch the graph for $0 \le x \le 2\pi$ and give the amplitude.
- (11) For $y = \frac{3}{4} \cos x$, sketch the graph for $-\pi \le x \le 3\pi$ and give the amplitude.
- (12) Find the equation of the sine or cosine function which fits this information: The function has a maximum value of 6 at $x = \pi/2$. It then reaches a minimum value of -6 at $x = 3\pi/2$. The function attains its maximum value again at $x = 5\pi/2$.
- (13) Explain if this equation is an identity or not:

$$\sin\theta + \sec\theta = \tan\theta$$

(14) Verify the identity:

$$\sin \alpha = \frac{\tan \alpha \cot \alpha}{\csc \alpha}$$

(15) Verify the identity:

$$\frac{\csc\theta}{\cot\theta + \tan\theta} = \cos\theta$$

Answers to questions (1)-(8):

(1) The amplitude of $y = 4 \sin x$ is 4.

	x	$\cos x$	$-3\cos x$
-	0	1	-3
(2)	$\pi/2$	0	0
(2)	π	-1	3
	$3\pi/2$	0	0
	2π	1	-3

(6) For $\theta = \pi$ we have

$$\cos\theta + \sin\theta = \cos\pi + \sin\pi = -1 + 0 = -1$$

and so $\cos \theta + \sin \theta = 1$ is not an identity since it's not true for all numbers θ .

(7) Starting with the left side:

$$\sin \theta \sec \theta = \sin \theta \frac{1}{\cos \theta} \quad (\text{from definition of } \sec \theta)$$
$$= \frac{\sin \theta}{\cos \theta} \quad (\text{algebra})$$
$$= \tan \theta \quad (\text{from definition of } \tan \theta).$$

This proves the identity $\sin \theta \sec \theta = \tan \theta$.

(8) Starting with the left side:

$$(\sec t + 1)(\sec t - 1) = \sec^2 t - 1$$
 (by multiplying out)
= $\tan^2 t$ (by a Pythagorean identity).

This proves the identity $(\sec t + 1)(\sec t - 1) = \tan^2 t$.