Let F be a field. Then all nonzero elements of F are invertible:

$$F^\times = F - \{0\}.$$

An important part of the description of fields is that finite multiplicative subgroups of F^\times are cyclic. In this note we give a detailed proof, see Serre [1, p. 4], of a slightly more general result and provide examples. We first prove a couple of straightforward lemmas.

Let \mathbb{Z}_n be the cyclic group of order $n \geq 1$, defined as

$$\mathbb{Z}_n := \langle x \mid x^n = 1 \rangle.$$

Recall the Euler ϕ function: $\phi(n)$ counts the number of positive integers up to n that are prime to n.

Lemma 1.1. The number of elements of \mathbb{Z}_n with order $m \geq 1$ is $\phi(m)$ if $m|n$ and 0 otherwise.

Proof. For x a generator of \mathbb{Z}_n, we claim that the order of x^a in \mathbb{Z}_n is $n/(a,n)$ for all $a \in \mathbb{Z}_{\geq 0}$. The claim is true for $a = 0$. Fix $a > 0$ and denote the order of x^a by k. Check that

$$(x^a)^{n/(a,n)} = 1$$

since $n \mid an/(a,n)$ so that

$$k \mid n/(a,n).$$

We must also have $n|ak$ if the order of x^a is k. Hence

$$n/(a,n) \mid a/(a,n) \cdot k.$$

But $n/(a,n)$ and $a/(a,n)$ are relatively prime implies

$$n/(a,n) \mid k.$$

Then (1.1) and (1.2) prove the claim that $k = n/(a,n)$.

Now we just need to count the solutions to $m = n/(a,n)$ for $0 \leq a \leq n - 1$. Since $n/(a,n)$ divides n there are no solutions for m not dividing n. For m dividing n we require

$$(a,n) = n/m.$$

Hence a must be of the form $n/m \cdot b$ with $(b,m) = 1$ and $1 \leq b < m$. There are $\phi(m)$ such bs.

Lemma 1.2. We have

$$\sum_{d|n} \phi(d) = n$$

Proof. This follows from Lemma 1.1: since each element in \mathbb{Z}_n has order d dividing n, both sides of (1.3) count the number of elements in \mathbb{Z}_n.

Theorem 1.3. Let G be a finite group of order n. For every divisor d of n suppose that the number of $g \in G$ satisfying $g^d = 1$ is at most d. Then G is cyclic.

Proof. Denote by $\psi(m)$ the number of elements in G of order m. Since every element of G has order dividing n, we see

$$\sum_{d|n} \psi(d) = n.$$

Let d be a divisor of n and suppose $\psi(d) \neq 0$, with $x \in G$ of order d. Then

$$\langle x \rangle = \{1, x, x^2, \ldots, x^{d-1}\}.$$

Date: Dec 1, 2012.
For \(y \in \langle x \rangle \) we have \(y^d = (x^i)^d = (x^d)^i = 1 \), so by our hypothesis \(\langle x \rangle \) contains all the solutions \(g \in G \) to \(g^d = 1 \). In particular \(\langle x \rangle \) contains all the elements in \(G \) of order \(d \). By Lemma 1.1, \(\langle x \rangle \) contains exactly \(\phi(d) \) such elements. Hence we have proved that \(\psi(d) \) is 0 or \(\phi(d) \). Therefore, with (1.3) and (1.4),
\[
\psi(n) = \sum_{d|n} \phi(d) = \sum_{d|n} \phi(d) = n \tag{1.5}
\]
and we must have equality in (1.5) with \(\psi(d) = \phi(d) \) for all \(d|n \). In particular, \(\psi(n) = \phi(n) \geq 1 \) so that there is an element of \(G \) of order \(n \), proving that \(G \) is cyclic.

Corollary 1.4. For \(F \) a field, every finite multiplicative subgroup of \(F^\times \) is cyclic.

Proof. As we showed in class, \(x^d - 1 \in F[x] \) has at most \(d \) roots in \(F \). Therefore Theorem 1.3 applies.

Corollary 1.5. For \(F \) a field and \(G \) a finite multiplicative subgroup, the number of elements of \(G \) of order \(d \) is \(\phi(d) \) if \(d \) divides \(|G| \) and 0 otherwise.

Corollary 1.6. Let \(\mathbb{F}_q \) be a finite field. Then \(\mathbb{F}_q^\times \) must be a cyclic group of order \(q - 1 \).

Example 1.7. Corollary 1.6 implies that \((\mathbb{Z}/p\mathbb{Z})^\times \) is cyclic. No formula is known for any of the \(\phi(p-1) \) generators of \((\mathbb{Z}/p\mathbb{Z})^\times \). The smallest generators, for \(p \) running over the first 100 primes, are:
\[
1, 2, 2, 3, 2, 2, 3, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 6, 3, 3, 2, 3,
2, 2, 6, 5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2, 3, 2, 6, 3, 7, 7, 6, 3, 5, 2, 6, 5, 3, 3, 2, 5, 17, 10, 2,
3, 10, 2, 2, 3, 7, 6, 2, 2, 5, 2, 5, 3, 21, 2, 2, 7, 5, 15, 2, 3, 13, 2, 3, 2, 13, 3, 3, 2, 7, 5, 2, 3, 2, 2.
\]
Tables like these were studied by Gauss. *Artin’s conjecture for primitive roots* (1927) states that each squarefree integer \(a \neq -1 \) is a generator for infinitely many primes \(p \). Despite much progress, the conjecture is still open.

We also note that, even though \(\mathbb{Z}/p^n\mathbb{Z} \) is not a field for \(n > 1 \), we do have that \((\mathbb{Z}/p^n\mathbb{Z})^\times \) is cyclic for \(p \) an odd prime. In the following two examples we confirm Corollary 1.4 for the fields \(\mathbb{C} \) and \(\mathbb{Q}_p \).

Example 1.8. The elements of any finite subgroup of \(\mathbb{C}^\times \) must be of finite order. Therefore they must be roots of unity: complex numbers of the form
\[
\exp(2\pi i h/k) \quad \text{for} \quad h/k \in \mathbb{Q} \cap [0, 1).
\]
Hence any finite subgroup \(G \) of \(\mathbb{C}^\times \) is isomorphic to a finite subgroup of \(\mathbb{Q}/\mathbb{Z} \) and necessarily cyclic, generated by \(\exp(2\pi i h/k) \in G \) with minimal \(h/k > 0 \).

Example 1.9. Let \(\mathbb{Q}_p \) be the field of \(p \)-adic numbers for \(p \) an odd prime. The only roots of unity in \(\mathbb{Q}_p \) are the Teichmüller representatives
\[
\omega(1), \omega(2), \ldots, \omega(p-1).
\]
These are distinct solutions of \(x^{p-1} = 1 \) with \(\omega(i) \equiv i \mod p \). It may be shown that they form a cyclic group of order \(p - 1 \). Thus any finite subgroup of \(\mathbb{Q}_p^\times \) is a subgroup of this cyclic group. (The roots of unity in \(\mathbb{Q}_2 \) are just \(\pm 1 \).)

See [1, Chapter 2] for properties of the \(p \)-adic numbers. Available as a pdf here:

REFERENCES