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Connectivity and Dimension of the p-locus in moduli space

G. Gromadzki, A. Weaver, A. Wootton

Abstract. We construct a finite simplicial complex whose vertices correspond
to the (p, n)-gonal loci in the moduli space of compact Riemann surfaces of
genus g > 1. Here p is a fixed odd prime and n is the genus of the quotient sur-
face resulting from the action of a cyclic group of order p on a surface of genus
g. Edges between vertices (p, n) and (p,m) exist whenever there is a surface
which is both (p, n)- and (p,m)-gonal. We determine the connected compo-
nents of the complex, and an upper bound on the dimension of the largest
simplex. We show the bound is attained for sufficiently large g. The complex
is a first step toward a potential cohomological approach to the singular locus
of the moduli space.

1. Introduction

The singular locus in the moduli space Mg, g > 1, consists of conformal equiv-
alence classes of compact Riemann surfaces of genus g with a non-trivial auto-
morphism group. It is covered by its p-loci, consisting of surfaces admitting an
automorphism of prime order p ([8], [9]). The covering is finite, since only finitely
many primes p act in any given genus [12]. By ‘covering’ we simply mean a de-
composition into a non-disjoint union of subsets. A finer (but still finite) covering
consists of (p, n)-gonal subloci, consisting of surfaces for which the quotient modulo
the p action has fixed genus n ≥ 0.

In this paper, for fixed odd prime p and fixed genus g > 1, we construct a finite
simplicial complex Gp

g , the p-local complex, whose vertices are (p, n)-gonal loci in
Mg. An edge (1-simplex) is drawn between two vertices (p, n) and (p,m), n ̸= m,
if and only if the corresponding loci have non-empty intersection, i.e., there exists
a surface of genus g which is both (p, n)-gonal and (p,m)-gonal. We show that
Gp
g , when non-empty, has at most one non-trivial path-connected component, and

possibly some isolated vertices. The non-trivial path-connected component, when
it exists, is spanned by a “star-like” tree – any two vertices are joined by a path
of length at most two passing through a unique “central” vertex (see Figure 1).
We also determine an upper bound on the geometric dimension d of Gp

g , which
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is the highest dimension of a simplex; equivalently, d is the largest integer such
that a surface of genus g is simultaneously (p, n1)-, (p, n2)-, . . . , (p, nd+1)-gonal, for
pairwise distinct n1, n2, . . . nd+1. We show that the bound is attained for sufficiently
large g. Knowledge of the connectivity and geometric dimension of the p-loci should
shed some light on corresponding properties of the full singular locus, a subject of
long-standing and still-current interest [2], [16].

2. Preliminaries

In discussing group actions on compact Riemann surfaces of genus g > 1, we
use the uniformization approach originating with Klein, Poincaré and Koebe, and
reinvigorated by Macbeath in 1961 [17], which describes the actions in terms of
covering actions by Fuchsian groups on the upper half-plane H endowed with the
hyperbolic metric ds2 = (dx2 + dy2)/y2.

A Fuchsian group is a discrete group of orientation-preserving isometries of
H, the full group being isomorphic to PSL(2,R). We consider only co-compact
Fuchsian groups, having compact orbit (quotient) space, and henceforth this is
what we mean when we use the term Fuchsian group. The orbit space inherits
the complex structure from H and hence becomes a compact Riemann surface.
A Fuchsian group Λ has a signature of the form (h;m1, . . . ,mr) indicating that
the orbit genus (genus of H/Λ) is h ≥ 0, and the quotient map π : H → H/Λ
branches over r points with ramification indices m1, . . . ,mr > 1. When r = 0, the
signature is written (h;−) and Λ is called a surface group. The signature determines
a presentation for Λ as follows:

〈

α1,β1, . . . ,αh,βh, γ1, . . . , γr

∣
∣
∣
∣
γm1

1 , . . . , γmr
r ,

h
∏

i=1

[αj ,βj ]
r
∏

j=1

γi

〉

The generators α1,β1, . . . ,αg,βg are hyperbolic isometries, of infinite order and hav-
ing no fixed points in H (but two on the ideal boundary y = 0), while γ1, . . . , γr
are elliptic isometries of maximal finite order having unique fixed points in H. Any
element of finite order in Λ is conjugate to a power of one of the elliptic genera-
tors (compactness of the quotient space rules out parabolic isometries.) Together,
α1,β1, . . . ,αh,βh, γ1, . . . , γr comprise a set of canonical generators for Λ.

Any compact Riemann surface X of genus g > 1 is conformally equivalent to
the orbit space H/Γ where Γ is a surface group of genus g. X admits a group G of
conformal automorphisms if and only if there is a Fuchsian group Λ, containing Γ as
a normal subgroup, such that G ∼= Λ/Γ. Equivalently, there exists an epimorphism
θ : Λ → G with Γ as the kernel. Such epimorphisms are called smooth or surface-
kernel to indicate that no element of finite order is mapped to an element of smaller
order, or (equivalently), that the kernels are torsion-free. Λ is called the covering
or uniformizing group of the G action. By a famous theorem of Hurwitz [13], G is
in fact a finite group of order ≤ 84(g − 1).

The Riemann-Hurwitz relation ties together all the topological data associated
with a G action on a surface of genus g, as follows. If the covering Fuchsian group
has signature (h;m1, . . . ,mr), and |G| denotes the order of G, then

2g − 2 = |G|
[

2h− 2 +
r

∑

i=1

(

1−
1

mi

)]

.
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Since g > 1, the rational number in brackets must be positive. In fact this num-
ber is proportional to the hyperbolic area of a fundamental region for the action
of the covering Fuchsian group on H. Signatures for which this number is 0 or
negative define non-Fuchsian groups which, if not trivial, are isomorphic to groups
of euclidean or spherical isometries, respectively.

We shall use a theorem due to Accola (Theorem 2.2 below) which yields a re-
markably simple characterization of the possible sets of nonnegative integers which
can be simultaneous orbit genera for p-actions on a single surface (Lemma 4.5).
Accola’s theorem treats groups with a partition. Such groups possess two or more
proper non-trivial subgroups whose union is the whole group and whose pairwise
intersections are the trivial group. For example, the elementary abelian p-group Z2

p

= Zp ⊕ Zp = ⟨x, y⟩ has the partition

(1) ⟨xy⟩, ⟨xy2⟩, . . . , ⟨xyp−1⟩, ⟨x⟩, ⟨y⟩

into p + 1 proper non-trivial subgroups. This is a special case of a more general
result. Let

(2) σN = 1 + p+ p2 + · · ·+ pN−1.

Lemma 2.1. Ze+1
p , e ≥ 1, admits a partition into σe+1 distinct cyclic subgroups

of order p.

Proof. By (1), the statement is true for e = 1. Proceeding by induction
on e, suppose it is true for e = k ≥ 1. Let gi, i = 1, . . . ,σk+1 be a generator
for the ith group in the partition of Zk+1

p . Adjoin a new generator h of order p

which commutes with all the gi, to produce a group isomorphic to Zk+2
p . There

are now p− 1 new subgroups ⟨hgi⟩, ⟨h2gi⟩, . . . , ⟨hp−1gi⟩, for each i = 1, . . . ,σk+1,
in addition to the new subgroup ⟨h⟩. It is straightforward to verify that the new
and old subgroups taken together form a partition of Zk+2

p . The partition has the
original σk+1 subgroups plus 1 + (p− 1)σk+1 new ones. The fact that

σk+1 + 1 + (p− 1)σk+1 = σk+2

follows from the identity pσN + 1 = σN+1. !

When a group with partition acts on a surface, the total ramification is the
sum of the separate ramifications of the induced actions of the subgroups. This is
the crucial point in Accola’s proof.

Theorem 2.2 (Accola [1]). Let G be a finite group with partition {G1, . . . , Gt}.
If G acts on a compact Riemann surface of genus g with orbit genus m, and the
restricted Gi actions have orbit genera mi, i = 1, . . . , t, then

(t− 1)g + |G| ·m =
t

∑

i=1

|Gi| ·mi.

Proof. The Riemann-Hurwitz relation for the Gi action has the form

(3) 2g − 2 = |Gi|(2mi − 2) + ri,

where ri ≥ 0 is the ramification term. If a non-trivial element g ∈ G fixes a point,
it generates a cyclic subgroup which is contained in exactly one of the subgroups
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Gi (since the Gi form a partition). Thus, in the Riemann-Hurwitz relation for the
full G action,

(4) 2g − 2 = |G|(2m− 2) + r,

the ramification term r is equal to
∑t

i=1 ri. After summing (3) for i = 1, 2, . . . , t
we obtain two expressions for r, the second coming from (4). Equating them yields
t(2g− 2)−

∑t
i=1 |Gi|(2mi− 2) = 2g− 2− |G|(2m− 2). The relation in the theorem

follows from this and the element count
∑t

i=1 |Gi| = |G|+ t− 1. !

3. An upper bound on the geometric dimension of Gp
g

In this section we prove that the geometric dimension of Gp
g is at most σe+1−1,

where pe is the highest power of p dividing g−1. This requires a brief excursion into
the theory of finite p-groups. We are grateful to Andrei Jaikin for the statements
and proofs of Lemmas 3.2 and 3.3.

Let G be a group acting on a surface of genus g > 1. Conjugate subgroups
of G act with identical signatures since their uniformizing Fuchsian groups are
conjugate in PSL(2,R). If the subgroups in question are cyclic of prime order p,
this is equivalent to the quotient genera being equal. Therefore, the largest integer
d such that a surface of genus g is simultaneously (p, n1)-, (p, n2)-, . . . , (p, nd+1)-
gonal, for pairwise distinct n1, n2, . . . nd+1 (the geometric dimension of Gp

g ) is no
larger than the largest number of distinct conjugacy classes of subgroups of order
p that can occur within G, where G varies over all possible automorphism groups
of surfaces of genus g. It is correct to say ‘no larger’ rather than ‘equal to’ since
non-conjugate cyclic groups of order p may nonetheless have the same orbit genus.
Non-conjugate elements in a p-Sylow subgroup may be conjugate in the full group
G, but, for the purpose of determining an upper bound on the number of distinct
conjugacy classes in G, it suffices to assume that G is a p-group.

3.1. Kulkarni’s result. A group has exponent E if it contains elements of
order E but no elements of larger order. In the seminal paper [15], Kulkarni
showed that a p-group P , where p is odd, of order pk and exponent pn, n ≤ k,
acts on a surface of genus g only if g ≡ 1 (mod pk−n). (A modified result is given
in the case p = 2.) If the integer k − n (the so-called cyclic p-deficiency of P ) is
small, then P contains a large cyclic subgroup. In the extreme case k − n = 0, P
is itself cyclic (possibly trivial), containing (if not trivial) a unique cyclic subgroup
of order p. So if g ̸≡ 1 (mod p), no surface is both (p, n)- and (p,m)-gonal for
n ̸= m, that is, Gp

g is either empty or has geometric dimension 0. On the other
hand, if P is far from cyclic, i.e., if k−n is rather large, there is the potential for a
large number of non-conjugate cyclic groups of order p. Kulkarni’s result suggests
that the geometric dimension of Gp

g should increase in accordance with the highest
power of p dividing g − 1. To make this precise we need an upper bound on the
number of conjugacy classes of cyclic subgroups of order p in a finite p-group.

3.2. Conjugacy classes of subgroups of order p in a p-group. Let P
be a finite p-group. Let Kp(P ) be the number of conjugacy classes of elements of
order p, and KZp

(P ) the number of conjugacy classes of subgroups of order p in P .

Lemma 3.1. KZp
(P ) = Kp(P )/(p− 1).
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Proof. First, for any element x of order p the conjugacy classes of the powers
of x, CP (x), CP (x2), . . . CP (xp−1) are all distinct. For if αxα−1 = xs for some
α ∈ P , then the order of α is a divisor of the order of Aut(⟨x⟩), which is p − 1;
thus α is the identity and s = 1. Next, an element y is conjugate to a power
of x if and only if ⟨y⟩ and ⟨x⟩ are conjugate subgroups. Therefore there is a
one-to-one correspondence between distinct sets of conjugacy classes of the form
{CP (x), CP (x2), . . . CP (xp−1)}, of which there are Kp(P )/(p − 1), and conjugacy
classes of subgroups of order p. !

For the next two lemmas, whose proofs are quite technical (and might be
skipped on first reading), the following additional notation is convenient. If G
is a finite p-group, H a subgroup, and S an H-invariant subset of G, then KH(S)
denotes the number of H-conjugacy classes of elements in S; and KH

p (S) the num-
ber of H-conjugacy classes of elements of order p in S. For simplicity, we write
K(G) for KG(G).

Lemma 3.2 (Jaikin [14]). If P contains a central element x of order p2, then
Kp(P ) ≤ Kp(P/⟨xp⟩).

Proof. Let T = {Ti/⟨x⟩ | Ti ≤ P} be a set of representatives of the conjugacy
classes of subgroups of order p in the factor group P/⟨x⟩. For each Ti/⟨x⟩ ∈ T , let
Ci = NP (Ti), the normalizer of Ti in P . Each Ti is an abelian group of order p3.
Ti\⟨x⟩ (note: backslash) denotes the elements of Ti not belonging to ⟨x⟩. If Ti is
cyclic, then there are no elements of order p in this set. If Ti is not cyclic, fix an
element yi ∈ Ti\⟨x⟩ of order p. Then

KCi
p (Ti\⟨x⟩) = KCi

p (⟨yi, x
p⟩\⟨xp⟩) =

{

p2 − p if Ci centralizes yi
p− 1 if Ci does not centralize yi.

Let T̃i = Ti/⟨xp⟩, C̃i = Ci/⟨xp⟩, and let x̄ and ȳi be the images of x and yi in
G̃ = G/⟨xp⟩. If Ti is cyclic there are no elements of order p in T̃i/⟨x̄⟩, and if Ti is
not cyclic, then

KC̃i
p (T̃i\⟨x̄⟩) = p2 − p,

because C̃i centralizes ȳi. Thus we obtain

Kp(P ) = p−1+
∑

Ti/⟨x⟩∈T

KCi
p (Ti\⟨x⟩) ≤ p−1+

∑

Ti/⟨x⟩∈T

KC̃i
p (T̃i\⟨x̄⟩) = Kp(P/⟨x

p⟩).

!

Lemma 3.3 (Jaikin [14]). For a p-group P of order pk and exponent pn,
Kp(P ) ≤ pk−n+1 − 1.

Proof. The result is clearly true when n = 1, so assume n > 1. The lemma is
proved by induction on n. Let a ∈ P be an element of order pn. Put b = ap

n−2

, an
element of order p2. Let H = CP (b), the centralizer of b in P . Note that if g /∈ H ,
then the ⟨a⟩-conjugacy class of g has at least pn−1 elements. Thus,

K⟨a⟩(P\H) ≤
|P\H |

pn−1
.
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Also, by Lemma 3.1, Kp(H) ≤ Kp(H/⟨bp⟩). Since a ∈ H , H/⟨bp⟩ has exponent at
least pn−1. By induction,

Kp(H) ≤ Kp(H/⟨bp⟩) ≤
|H/⟨bp⟩|

pn−2
− 1 =

|H |

pn−1
− 1.

Thus we obtain

Kp(P ) ≤ K⟨a⟩(P\H) +Kp(H) ≤
|P\H |

pn−1
+

|H |

pn−1
− 1 = pk−n+1 − 1.

!

Now we need only a short argument to obtain the upper bound on the geometric
dimension of Gp

g . Let pe be the highest power of p dividing g − 1. For odd p, if
e = 0, as already already noted, Gp

g is either empty or has geometric dimension 0.
So suppose e > 0. Then g ≡ 1 (mod pe). By Kulkarni’s result, a p-group P of
order pk acting in genus g has exponent at least pk−e. It follows from Lemma 3.1
combined with Lemma 3.3 that

KZp
(P ) ≤

pk−(k−e)+1 − 1

p− 1
=

pe+1 − 1

p− 1
= σe+1.

Thus the geometrical dimension is at most σe+1 − 1. Note that this formula holds
also in the case e = 0.

See [6] for related results in the case p = 2.

4. Intersections between (p, ni)- gonal loci

Henceforth, we assume p is an odd prime. By Kulkarni’s result, if g ̸≡ 1
(mod p), no surface of genus g is both (p, n)-gonal and (p,m)-gonal for n ̸= m.

Proposition 4.1. A surface of genus g ≡ 1 (mod p) which is both (p, n)-gonal
and (p,m)-gonal, n ̸= m, admits automorphism groups isomorphic to Z2

p whose
actions induce both the (p, n)-gonal and the (p,m)-gonal automorphism.

Proof. Let G be the full automorphism group of the surface, and let P be
a p-Sylow subgroup of G. P has a non-trivial center which contains a (p, l)-gonal
group for some l. If l = n or m, then there are (p, n)-gonal and (p,m)-gonal
subgroups of P containing mutually commuting elements (simply take one to be
central), generating a subgroup isomorphic to Z2

p. If l ̸= n and l ̸= m, there is a
central (p, l)-gonal group that contains elements which commute with any elements
from any (p, n)- and (p,m)-gonal group, generating, with each in turn, a subgroup
isomorphic to Z2

p. !

Surfaces which are (p, ni)-gonal for more than p + 1 distinct ni must admit
actions by elementary abelian p-groups of rank greater than 2.

4.1. Existence of Ze+1
p actions. By Kulkarni’s result, if Ze+1

p acts on a
surface of genus g, then g ≡ 1 (mod pe). The following lemma provides a stronger
necessary condition for the existence of such an action, and a canonical signature
for the covering Fuchsian group, having minimal orbit genus and maximal number
of periods.
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Lemma 4.2. Let g ≡ 1 (mod pe), and let p′ = (p− 1)/2. Let 0 ≤ κ < p′ be the
residue of g (mod p′). There exists a Ze+1

p action on a surface of genus g only if

(5)
g − 1− pe+1(κ− 1)

p′pe
= R

is a nonnegative integer. The covering Fuchsian group of a Ze+1
p action has signa-

ture (κ+tp′; p,R−tp. . . , p) for some t = 0, 1, 2, . . . , such that R−tp ≥ 0 and R−tp ̸= 1.

Proof. R is an integer because of the congruences 1 ≡ p ≡ g − 1 ≡ κ − 1
(mod p′). If there exists an H = Ze+1

p action in genus g, the signature of the
covering Fuchsian group ΛH is of the form (k; p, r. . ., p) for some k, r ≥ 0. The
Riemann-Hurwitz relation is

(6) (g − 1)/pe = p(k − 1) + p′r.

This together with the fact that p ≡ 1 (mod p′) implies k ≡ g (mod p′). Hence if
k < p′, then k = κ, and otherwise, there exists t ≥ 1 such that k = κ+ tp′. When
k = κ, (6) coincides with (5) if we put r = R. For general k = κ + tp′, (6) yields
r = R− tp. Clearly t ≤ R/p, and, of course, if R < 0, or if none of the signatures is
Fuchsian, there can be no H action. Assuming R ≥ 0 and the signature is Fuchsian,
let ρ : ΛH → H be a surface-kernel epimorphism corresponding to an H-action.
Each of the k commutators [αi,βi] ∈ ΛH maps to the trivial element (since H is
abelian), hence the product γ1γ2 . . . γr of the elliptic generators must be the trivial
element. None of the elliptic generators is itself mapped to the trivial element (ρ
being surface-kernel), hence r ̸= 1. !

Remark 4.3. Necessary and sufficient conditions for the existence of a Ze+1
p

action in terms of R and κ can be given (see [19], §7). These conditions are satisfied
if g is sufficiently large.

4.2. Induced (p, n)-gonal actions. An H = Ze+1
p action on a surface X

induces (p, n)-gonal actions by its proper non-trivial subgroups. The next lemma
gives the possible values of n. Let Zp,n denote a proper non-trivial subgroup of
H whose induced action on X is (p, n)-gonal. The quotient surface X/Zp,n is a
branched covering of the quotient surface X/H , so n ≥ k, where k is the genus of
X/H . To allow for all possible n, we assume k is minimal, that is, we assume the
H action has the canonical signature (κ; p, R. . ., p) with minimal orbit genus κ.

Lemma 4.4. Let X be surface of genus g ≡ 1 (mod pe) on which H = Ze+1
p

acts. Let ΛH be the covering Fuchsian group with signature (κ; p, R. . ., p) and ρ : ΛH →
H the corresponding surface-kernel epimorphism. Let Zp,n denote a proper, non-
trivial subgroup of H whose induced action on X is (p, n)-gonal. Then the possible
values of n are

(7) n = n(s) = 1 + pe(κ− 1) + pe−1p′(R− s),

where

s =

{

0, 1, 2, . . . , R− 2 if κ = 0; or

0, 1, 2, . . . , R− 2, R if κ > 0.

The parameter s is the number of elliptic generators of ΛH in the kernel of the map
χs ◦ ρ, where χs : H → H/Zp,n(s) ≃ Ze

p is the canonical quotient map.
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Proof. Let Λp,n, with signature (n; p, q. . ., p), be the covering Fuchsian group
of the induced Zp,n action. We first show that q is a multiple of pe. Since the Zp,n

action has q fixed points on X , it follows that the factor group H/Zp,n = Ze
p freely

permutes q corresponding points on the quotient surface X/Zp,n, in cycles of length
pe. (Otherwise there would be a point in X fixed by non-cyclic subgroup of Ze+1

p .)
Hence q = spe for some s ≥ 0. Now the Riemann-Hurwitz relation for the induced
Zp,n action reduces to

(8) n = 1 + (g − 1)/p− sp′pe−1.

Substituting for (g− 1)/p using (6), with k = κ and r = R, we obtain equation (7).
s ≤ R, since R is the total number of H-orbits on X with a non-trivial isotropy
subgroup and s is the number with a particular one, Zp,n(s). The composition
χs ◦ ρ : ΛH → H/Zp,n(s) maps the elliptic generators of ΛH fixing those s orbits to
the trivial element in H/Zp,n. The relation γ1 . . . γR[α1,β1] . . . [ακ,βκ] = id in ΛH

induces the relation

χs ◦ ρ(γ1 . . . γr[α1,β1] . . . [ακ,βκ]) = χs ◦ ρ(γ1 . . . γR) = id

in H/Zp,n. If s = R, the induced relation holds trivially. If s < R, we may suppose
that the first s canonical elliptic generators are in the kernel of χs ◦ ρ. Then the
induced relation is

χs ◦ ρ(γs+1γs+2 · · · · · γR) = id.

This is not possible if s = R−1, for then only γR has non-trivial image under χs◦ρ,
and χs ◦ ρ(γR) = id is a contradiction. If κ = 0, s = R is also not possible, since,
in this case, n(s) = n(R) < 0. !

4.3. Solutions of Accola’s relation. Specializing Accola’s Theorem 2.2 to
H = Ze+1

p , e ≥ 1, acting with canonical signature (κ; p, R. . ., p) on a surface of genus
g > 1, yields the relation

(9) gσe + κpe =

σe+1
∑

i=1

n(i),

where as before σN = 1 + p+ p2 + · · · + pN−1. The summands n(i) are the orbit-
genera of the σe+1 subgroups in the partition of H (Lemma 2.1). By Lemma 4.4,
the indices i, with possible repeats, come from the set {0, 1, 2, . . . , R}.

Lemma 4.5. {n(i) | i ∈ I}, where the index set I has cardinality |I| = σe+1, is
a solution of Accola’s relation (9) if and only if

∑

i∈I i = R.

Proof. We claim that {n(i) | i ∈ I0}, with index set I0 = {0(−1+σe+1), R}, is a
solution, where the superscript in parentheses denotes the multiplicity of the corre-
sponding index. (This convention is used henceforth.) Note that I0 has cardinality
σe+1. To see that

n(0) · (−1 + σe+1) + n(R)

is equal to the left-hand side of (9), use n(0) = 1 + (g − 1)/p (from (8)) and the
formula for n(R) given in Lemma 4.4. We leave the details to the reader.
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If two distinct index sets I and J determine solutions of (9), equality of the
sums

∑

i∈I

n(i) =

(

1 +
g − 1

p

)

|I|− p′pe−1

(
∑

i∈I

i

)

∑

j∈J

n(j) =

(

1 +
g − 1

p

)

|J |− p′pe−1

(
∑

j∈J

j

)

,

implies, since |I| = |J | = σe+1, that
∑

i∈I i =
∑

j∈J j. The common sum is R,
since that is the case for I0. !

Lemma 4.5 shows that solutions of (9) are in one-to-one correspondence with
additive partitions of R into σe+1 parts chosen from {0, 1, . . . , R}. For example,
the index sets

(10) Is = {0(−2+σe+1), s, R− s}, 0 ≤ s ≤ R

provide ⌊R/2⌋ distinct solutions in which any possible orbit-genus n(s) appears
together with the maximal one n(0). We shall make use of this solution in Section 5.
If j < σe+1, the index set

(11) Ij = {0(−j−1+σe+1), 1, 2, . . . , j, R − Tj},

where Tj is the triangular number
∑j

i=1 i = j(j + 1)/2, determines a solution to
(9), provided Tj ≤ R. If we define T0 = 0, then for all R ≥ 0, there is a unique
maximal j such that Tj ≤ R and 0 ≤ j < −1 + σe+1; with this j, (11) has the
maximum possible number of distinct parts, since the smallest indices are used a
minimal number of times. Indeed, the j + 2 indices (including 0) are distinct if
R − Tj > j; otherwise there is an index j′, 0 ≤ j′ ≤ j, such that R − Tj = j′ and
there are only j + 1 distinct indices.

4.4. Sharpness of the upper bound on the geometric dimension. The
existence of solutions (11) to Accola’s relation suggests that the upper bound on
the geometric dimension of Gp

g given in Section 3 is attained by surfaces admitting
an action of Ze+1

p . We show that this is indeed the case for sufficiently large g.
The rest of this section is devoted to the proof of the following theorem.

Theorem 4.6. Let g ≡ 1 (mod p), and let e ≥ 1 be the largest positive integer
such that g ≡ 1 (mod pe). Let R be the integer defined at (5), and let d be the
geometric dimension of Gp

g . If g is sufficiently large, then d ≥ j when Tj ≤ R < Tj+1

and d = −1 + σe+1 when R ≥ T−1+σe
.

We produce an action of H = Ze+1
p = ⟨x1, x2, . . . , xe+1⟩ on a surface of genus

g which induces (p, n(i))-gonal actions for each i in the index set Ij at (11), where
j ≥ 0 is the largest integer such that Tj ≤ R and j < p. If such an action
exists, it has covering Fuchsian group ΛH with signature (κ; p, R. . ., p), hyperbolic
generators α1,β1, . . . ,ακ,βκ, and elliptic generators γ1, γ2, . . . , γR. To produce the
desired action, we define a surface-kernel epimorphism ρ : ΛH → H so that exactly
i elliptic generators of ΛH map into the subgroup Hi < H , where Hi ≃ Zp is one
of the σe+1 subgroups of the partition of H , and Hi ̸= Hk for i ̸= k. By the last
sentence of Lemma 4.4, the induced action of Hi is (p, n(i))-gonal, as desired.

We first treat the case e = 1. Since σ2 = p + 1, we show that d = p when
R ≥ Tp, and d = j when Tj ≤ R < Tj+1, j < p. For R > 3, Table 1 gives a
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schema defining a surface-kernel epimorphism ρ : ΛH → H = Z2
p = ⟨x1, x2⟩. (We

put x1 = x and x2 = y to improve legibility.) Because id =
∏κ

i=1[αi,βi]
∏R

k=1 γk
in ΛH , the nontrivial powers of x and y must be chosen so that the product of all
R elements of H is the identity. We assert that this is always possible under the
stated restrictions (see Remark 4.7 below). We do not specify the images of the
2κ hyperbolic generators of ΛH (if any); they can be assigned arbitrarily, but it is
convenient to take them to be κ x’s and κ y’s. If R < Tp, then j ≤ p − 1, and
in Ij , the index 0 appears together with the indices 1, 2, . . . , j. R − Tj ≤ j by the
definition of j, hence there are j+1 distinct indices and therefore d ≥ j. If R ≥ Tp,
we use the index set Ip−1 = {0, 1, 2, . . . , p− 1, R− Tp−1}, which has p+ 1 distinct
indices, since R− Tp−1 ≥ p. Hence, again, d ≥ p.

Index
in Ij

Elliptic Generators
of ΛH

Images in H

if Tj < R: if Tj = R:

1 γ1 xy xy

2 γ2, γ3 xy2, xy2 xy2, xy2

3 γ4, γ5, γ6 xy3, xy3, xy3 xy3, xy3, xy3

...
...

...
...

j − 1 γ1+Tj−2
, . . . , γTj−1

xyj−1, . . . , xyj−1 powers of x

j γ1+Tj−1
, . . . , γTj

powers of x powers of y

R− Tj γ1+Tj
, . . . , γR powers of y -

Table 1. Schema for defining ρ : ΛH → H , H = Z2
p, R > 3

We next show how the schema in Table 1 generalizes to define actions of Ze+1
p ,

e ≥ 1 of the desired type. We make an inductive construction: Let g1, g2, . . . , gσe

be a set of generators for the distinct subgroups of a partition of Ze
p = ⟨x1, . . . , xe⟩,

and assume that

gσe
= xe, gσe−1 = xe−1, . . . gσe−e+1 = x1.

Adjoin a new generator xe+1 to form H = Ze+1
p = ⟨x1, . . . , xe+1⟩. Form a set

of σe+1 generators for the distinct subgroups of a partition of the larger group as
follows. Let hij = gix

j
e+1, i = 1, . . . ,σe, j = 0, . . . , p − 1. This amounts to pσe

generators, one less than the necessary σe+1 = pσe+1. Relabel the generators using
a single index, as ht, t = 1, . . . , pσe. Replace the last e generators by x1, . . . , xe, and
adjoin one more, defining hσe+1

= xe+1. We now have a complete set of generators,
and a schema for constructing ρ : ΛH → H = Ze+1

p is given in Table 2. (Table 1 is
the special case e = 1.)

Remark 4.7. In assuming that g is ‘sufficiently large’ we exclude cases where
R = R(e) < 0. Since R grows with g, we may further assume R > Te+1, which
implies j − e ≥ 1. The latter is the minimal assumption needed for the schema in
Table 2 to succeed even in the most restrictive case κ = 0. For example, taking e = 2
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Index
in Ij

Elliptic Generators
of ΛH

Images in H

if Tj < R: if Tj = R:

1 γ1 h1 h1

2 γ2, γ3 h2, h2 h2, h2

3 γ4, γ5, γ6 h3, h3, h3 h3, h3, h3

...
...

...
...

j − e γ1+Tj−e−1
, . . . , γTj−e

hj−e, . . . , hj−e powers of x1

j − e+ 1 γ1+Tj−e
, . . . , γTj−e+1

powers of x1 powers of x2

...
...

...
...

j − 1 γ1+Tj−2
, . . . , γTj−1

powers of xe−1 powers of xe

j γ1+Tj−1
, . . . , γTj

powers of xe powers of xe+1

R− Tj γ1+Tj
, . . . , γR powers of xe+1 -

Table 2. Schema for defining ρ : ΛH → H , H = Ze+1
p , e ≥ 1, R > Te+1

and R = 7 = 1 + T3, the schema allows the following surface-kernel epimorphism
onto Z3

p: γ1 0→ x1x2x3, γ2, γ3 0→ x1, x
−2
1 , γ4, γ5, γ6 0→ x2, x2, x

−3
2 , γ7 → x−1

3 . But
with R = 6 = T3, no construction is possible.

5. A spanning tree for Gp
g

The results of the previous section show there is a simplex in Gp
g for almost

any additive partition of R into σe+1 parts. Instead of attempting to draw every
simplex, we construct a minimal spanning tree. This determines the connected
components, and, along with the geometric dimension, provides a rather complete
picture.

By Proposition 4.1, any surface which is both (p, n(i))- and (p, n(j))-gonal, i ̸=
j, admits an action of Z2

p. Solutions (10) to Accola’s relation allow for a Z2
p action

which induces a (p, n(0))-gonal action and a (p, n(s))-gonal automorphism, for every
non-excluded s ∈ {1, . . . , R}. We use the (maximum) value of R determined by
putting e = 1 in (5), even if g ≡ 1 (mod pk) for some k > 1. The simple schema
in Table 3 shows these actions can be realized. (Nontrivial powers of x and y must
be chosen so that the total exponent on each is a multiple of p.) By symmetry of
Is in s and R− s, we may assume s ≤ ⌊R/2⌋. s = 1 requires an adjustment, since
{0(p−1), 1, R − 1} contains the excluded index R − 1. One can simply replace the
index set by {0(p−2), 12, R− 2}. It is easy to see that an appropriate surface-kernel
epimorphism can be constructed in this case.

It follows that any edge from (p, n(i)) to (p, n(j)) in Gp
g , i ̸= j, i, j ̸= 0, can

be replaced by a path of length 2 passing through (p, (n(0)). So, if g ≡ 1 (mod p),
there is a path-connected component of Gp

g with a star-like spanning tree centered
at (p, n(0)) having an edge from (p, n(0)) to each of the vertices (p, n(s)). If κ > 0,
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Index in Is Elliptic Generators of ΛH Images in H

s γ1, . . . , γs powers of x

R− s γs+1, . . . , γR powers of y

Table 3. Schema for ρ : ΛH → H = Z2
p, 1 < s ≤ ⌊R/2⌋

there are other, isolated vertices in Gp
g . This is because (7), with e = 1, yields

positive values of n for some excluded values of s, corresponding to (p, n)-gonal
groups not induced by any H = Z2

p action. In particular, n = 1 + p′ is obtained
by taking s = R − 1 (provided R > 0); in addition, if κ > 1, there are 2κ− 2 > 0
smaller positive values of n obtained by taking s > R:

n(R + t) = κ+ p′(2κ− 2− t), t = 1, 2, . . . , 2κ− 2.

This information is summarized in Figure 1, for R ≥ 3.

n(0)

n(1)

n(R− 2)

κ = 0

n(0)

n(1)

n(R− 2)

n(R)

n(R− 1)

. . .
n(R+ 1) n(R+ 2κ− 2)

︸ ︷︷ ︸

(if κ>1)

κ > 0

Figure 1. Spanning trees for Gp
g , g ≡ 1 (mod p), R ≥ 3

If R = 0, the star-like component reduces to the singleton n(0); if κ > 1, the
additional isolated vertices are n(2), . . . , n(2κ−2). If R = 2, the starlike component
is just the edge from n(0) and n(2); if κ > 1, the additional isolated vertices are
n(1), n(3), . . . , n(2κ − 1). If R = 1, Gp

g is empty. Finally, if g ̸≡ 1 (mod p), Gp
g is

either empty or consists of isolated vertices.
In Table 4 we show some spanning trees for p = 7.

6. Future directions

There are many ways to “cover” or “stratify” the singular locus in moduli space
Mg. Probably the most useful is the equisymmetricic stratification: each strata
is an irreducible complex algebraic variety consisting of surfaces with isomorphic
full automorphism groups whose actions are topologically equivalent (see [3], [4],
[12] for further details). The strata are in bijection with conjugacy classes of
finite subgroups of the mapping class group in genus g. Obtaining the complete
equisymmetric stratification in successive genera presents a series of increasingly
challenging problems in finite group theory. For this reason, coarser stratifications
are, if nothing else, useful stepping-stones. One might expand our approach in
several directions. It is interesting to speculate on how to interpret the cohomology
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g κ R Spanning Tree g κ R Spanning Tree

50 2 0 92 2 2

57 0 5 99 0 7

64 1 3 106 1 5

71 2 1
−

113 2 3

78 0 6 120 0 8

85 1 4 127 1 6

Table 4. Spanning trees for some G7
g ’s

groups of our finite simplicial complexes. One might also study the intersections
between (pi, n)-gonal and (pj ,m)-gonal loci, allowing the primes as well as the
orbit-genera to vary. We plan to pursue some of these ideas in future work.
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[13] A. Hurwitz, Über algebraische Gebilde mit eindeutigen Transformationen in sich, Matt.
Annalen 41 (1893) 403-42.

[14] A. Jaikin, personal communication.
[15] R.S. Kulkarni, Symmetries of surfaces, Topology 26 (2), 195-203 (1987).
[16] R.S. Kulkarni, Isolated points in the branch locus of the moduli space of compact Rie-

mann surfaces, Annales Academiae Scientarium Fennicae, Series A.I. Mathematica 16, 71-81
(1991).

[17] A.M. Macbeath, Fuchsian groups, in: Proceedings of the Summer School in Geometry and

Topology, Queens College, Dundee, 1962.
[18] A. Schweizer, On the uniqueness of (p, h)-gonal automorphisms of Riemann surfaces. Arch.

Math. (Basel) 98 (6) (2012), 591598.
[19] C. Maclachlan, Y. Talu, p-groups of symmetries of surfaces, Michigan Math J. 45, 315-332

(1998).


